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Administrative Matters

Instructor

Prof. Ciamac Moallemi
Uris 416
email: ciamac@gsb.columbia.edu

Office Hours

Drop by anytime M–F for quick questions, otherwise email for an
appointment. (I will schedule formal office hours if there is demand.)
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Administrative Matters

GSB Calendar

No class on 10/21.

Coursework and Grading

Homework (50%)

Final (50%)

Course Website

http://angel.gsb.columbia.edu
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Mathematical Prerequisites

Linear Algebra

Vectors and matrices over R

Null space, range

Transpose, inner product, norm

Eigenvalues of symmetric matrices; Spectral theorem

Positive definite and semidefinite matrices
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Mathematical Prerequisites

Calculus / Real Analysis

Open, closed, compact sets

Convergent sequences and subsequences

Continuity

Differentiability

Taylor series expansion

Mean value theorem

Implicit function theorem

Background Reading

Bertsekas NLP, Appendix A.0-A.5

Boyd & Vandenberghe, Appendix A
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Required Texts

D. P. Bertsekas, Nonlinear Programming, 2nd Edition. Athena
Scientific, 1999.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004. Available online at
http://www.stanford.edu/~boyd/cvxbook.

D. G. Luenberger, Optimization by Vector Space Methods. Wiley,
1969.
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Selected References

Real Analysis:

W. Rudin, Principles of Mathematical Analysis, 3rd Edition.
McGraw-Hill, 1976.

Linear Algebra:

G. Strang, Linear Algebra and Its Applications, 3rd Edition.
Brooks Cole, 1988.

Optimization:

D. P. Bertsekas, Convex Optimization Theory. Athena Scientific,
2009.

D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming,
3rd Edition. Springer, 2008.
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Introduction

An optimization problem (program):

minimize f (x)
subject to x ∈ C

x is the collection of decision variables

The real-valued function f (·) is the objective

C is the constraint set (feasible set, search space), it is a subset of the
domain of f

x∗ is an optimal solution (global minimizer) if

f (x∗) ≤ f (x), ∀ x ∈ C

The optimal value is f (x∗)
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Problem Classification

minimize f (x)
subject to x ∈ C

Maximization also falls within this framework

maximize f (x) ⇔ minimize −f (x)

Problem classifications
continuous vs. discrete
deterministic vs. stochastic
static vs. dynamic
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Constraint Sets

minimize f (x)
subject to x ∈ C

The feasible set will usually be constructed as the intersection of a
number of constraints, e.g.

C ={x : h1(x) = 0, . . . , hm(x) = 0} (equality constraints)

∩ {x : g1(x) ≤ 0, . . . , gr(x) ≤ 0} (inequality constraints)

∩ Ω (set constraint)

1 – 11

Motivating Example: Resource Allocation

Activities 1, . . . ,m (e.g., divisions of a firm)

Resources 1, . . . ,n (e.g., capital, labor, etc.)

Each activity consumes resources, and generates a benefit
(utility, profit, etc.)

Decision variables:
xij = quantity of resource j allocated to activity i
xij ≥ 0

The ith activity generates utility according to

Ui(xi1, . . . , xin)

The supply of the resources is limited, so we require that
m∑

i=1
xij ≤ Cj , ∀j
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Motivating Example: Resource Allocation

Objective: maximize total utility

maximize
m∑

i=1
Ui(xi1, . . . , xin)

subject to
m∑

i=1
xij ≤ Cj , ∀ 1 ≤ j ≤ n

x ≥ 0,
x ∈ Rm×n
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Motivating Example: Portfolio Optimization

Securities 1, . . . ,n are available for purchase

Security i has return ri , which is a random variable

E[ri ] = µi , Cov(ri , rj) = Γij

Decision variables: xi = fraction of wealth to invest in security i

x ≥ 0, 1>x =
n∑

i=1
xi = 1

Given a portfolio x,

E[return] =
n∑

i=1
µixi = µ>x, Var(return) =

n∑

i=1

n∑

j=1
Γijxixj = x>Γx

The investor requires return µ̄, so

µ>x = µ̄
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Motivating Example: Portfolio Optimization

Objective: minimize the variance of the portfolio return (risk)

minimize x>Γx
subject to 1>x = 1,

µ>x = µ̄,
x ≥ 0,
x ∈ Rn
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Motivating Example: Production Planning

A manufacturer is planning the production goods 1, . . . ,n over
the time horizon [0,T ]
Goods are produced at the rate r(t) ∈ Rn at time t, r(t) ≥ 0
d(t) ∈ Rn is the rate of demand at time t, manufacturer must
meet this demand

The inventory at time t is x(t) ∈ Rn

Given a fixed initial inventory x(0),

x(t) = x(0) +
∫ t

0
[r(τ)− d(τ)] dτ ≥ 0

Production cost rate c
(
r(t)

)
, for some function c(·) ≥ 0

Holding/inventory cost rate h>x(t), for some vector h ≥ 0 (linear)
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Motivating Example: Production Planning

Objective: minimize the total cost of the production plan

minimize
∫ T

0

[
c
(
r(t)) + h>x(t)

]
dt

subject to x(t) = x(0) +
∫ t

0
[r(τ)− d(τ)] dτ ≥ 0, ∀ t ∈ [0,T ]

r(t) ≥ 0, ∀ t ∈ [0,T ]
r(·) ∈ C

(
[0,T ],Rn)

Here,

C
(
[0,T ],Rn) = continuous functions from [0,T ] to Rn
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Other Examples

Data analysis: fitting, statistical estimation

Solution of equilibrium models

Game theory

Communications: scheduling, routing

Computer-aided design
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The Basic Questions

minimize f (x)
subject to x ∈ C

Does an optimal solution exist?

Can we characterize the set of optimal solutions? (Necessary &
sufficient conditions)

Is the optimal solution unique?

How sensitive is the solution to changes in the objective function or
constraint set?

How can an optimal solution/the optimal value be efficiently
computed?
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Big Idea I: Differentials

The behavior of a “smooth” function f (·) close to a point x can be
approximated with derivatives, e.g., if y is close to x,

f (y) ≈ f (x) + f ′(x)(y − x)

x

f (x)

x0 x1
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Big Idea II: Duality

S

H

x

Problem 1. Find the smallest distance
between a vector x and any point in the
convex set S

Problem 2. Find the largest distance
between a vector x and any hyperplane
separating x from S

These problems are equivalent!

minimize over points ⇔ maximize over hyperplanes
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A Taxonomy of Mathematical Programming

minimize f (x)
subject to hi(x) = 0, ∀ 1 ≤ i ≤ m

gi(x) ≤ 0, ∀ 1 ≤ i ≤ r
x ∈ Rn

Linear programming: f (·), {hi(·)}, {gi(·)} are linear

Convex programming: f (·), {gi(·)} are convex, {hi(·)} linear

Non-convex programming: anything goes

local theory︷ ︸︸ ︷
linear ≤ convex︸ ︷︷ ︸

global theory

≤ non-convex
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Rough Syllabus

1. Introduction

2. Local theory of optimization (differentials, Lagrangians)

3. Global theory of optimization (convexity, duality)

4. Applications & problem formulation

5. Vector spaces: a unifying theory
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Existence of Solutions

minimize f (x)
subject to x ∈ C

When does an optimal solution exist?

Example.
minimize x
subject to x ∈ R ⇒ Unbounded!

Example.
minimize 1/x
subject to x > 0 ⇒ Bounded, but no optima!
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Background: Basic Topology

Definition. An open ball (or, “neighborhood”) around a point x ∈ Rn

with radius r > 0 is the set

Nr(x) , {y ∈ Rn : ‖x − y‖ < r}

Here,

‖x‖ ,
( n∑

i=1
x2

i

)1
2
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Background: Open and Closed Sets

Consider a set E ⊂ Rn .

Definition. A point x ∈ E is an interior point if there exists an open ball
Nr(x) such that Nr(x) ⊂ E . The interior int E is defined to be the set
of all interior points of E .

Definition. E is open if E = int E .

Definition. A point x ∈ Rn is a closure point of E if, for every open ball
Nr(x), there exists y ∈ E with y ∈ Nr(x). The closure cl E is defined to
be the set of all closure points of E .

Definition. E is closed if every closure point if E = cl E .
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Background: Open and Closed Sets

Theorem.

(a) The union of any collection of open sets is open.

(b) The intersection of any collection of closed sets is closed.

(c) The intersection of any finite collection of open sets is open.

(d) The union of any finite collection of closed sets is closed.
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Background: Convergence

Definition. A sequence of vectors {xk} ⊂ Rn converges to a limit
x ∈ Rn if

lim
k→∞

‖x − xk‖ = 0

We say xk → x.
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Background: Compactness

Consider a set E ⊂ Rn .

Definition. E is compact if, given a sequence {xk} ⊂ E , there is a
subsequence {xki} converging to an element x ∈ E .

Definition. E is bounded if there exists a neighborhood Nr(x) such
that E ⊂ Nr(x).

Theorem. (Heine-Borel) A set E ⊂ Rn is compact if and only if it is
closed and bounded.

Theorem. A closed subset of a compact set is compact.

Theorem. Suppose {En} are is a sequence of non-empty, compact
sets that are nested, i.e., En+1 ⊂ En . Then, their intersection is
non-empty.
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Background: Continuity

Consider a real-valued function f (·) defined on a domain X ⊂ Rn .

Definition. f (·) is continuous at the point x ∈ X if, for every sequence
{xk} ⊂ X with xk → x,

lim
k→∞

f (xk) = f (x)

We say f (·) is continuous if it is continuous at all points of X .

Consider a set A ⊂ R, define the inverse image

f−1(A) , {x ∈ X : f (x) ∈ A}

Theorem. Assume that f (·) is continuous. If the domain X is open
(respectively, closed) and A is open (closed), then f−1(A) is also open
(closed).
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Existence Theorem I

minimize f (x)
subject to x ∈ C ⊂ Rn

When does an optimal solution exist?

Theorem. (Weierstrass) Assume that C is non-empty and that f (·) is
continuous over C.
If C is compact, then the set of optimal solutions of f (·) is non-empty
and compact.
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Proof of Existence Theorem I

Define
f ∗ = inf

x∈C
f (x) ∈ R ∪ {−∞}

Note: f ∗ always exists!

Given γ > f ∗, the sub-level set

C(γ) , {x ∈ C : f (x) ≤ γ}
must be non-empty and, by the continuity of f (·), is closed. Then,
since C is compact, C(γ) also compact. Given a sequence of real
numbers {γk} with γk ↓ f ∗, the set of optimal solutions is

X ∗ =
∞⋂

k=1
C(γk)

The intersection of a collection of nested, non-empty compact sets is
non-empty and also compact.
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Application: Portfolio Optimization

minimize x>Γx
subject to 1>x = 1,

µ>x = µ̄,
x ≥ 0,
x ∈ Rn

Check that:

The objective is continuous
⇒ true since it is a polynomial

The feasible set is non-empty
⇒ true iff min

i
µi ≤ µ̄ ≤ max

i
µi

The feasible set is compact
⇒ clearly bounded
⇒ closed since it is the inverse image of a closed set under a
continuous function
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Coerciveness

Example. Consider the program
minimize x2

subject to x ∈ R
This has a unique optimal solution x∗ = 0, but the Weierstrass
Theorem does not apply since the feasible set is not compact.

Consider a real-valued function f (·).

Definition. f (·) is coercive over a set C ⊂ Rn , if, for every sequence
{xk} ⊂ C with ‖xk‖ → ∞,

lim
k→∞

f (xk) =∞
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Existence Theorem II

minimize f (x)
subject to x ∈ C ⊂ Rn

When does an optimal solution exist?

Theorem. Assume that C be non-empty and that f (·) is continuous
over C.
If C is closed and f (·) is coercive over C, then the set of optimal
solutions of f (·) is non-empty and compact.

Proof. Since f (·) is coercive, that C(γ) is non-empty and bounded for
γ > f ∗. Since the domain C is closed and C(γ∗) , f−1((−∞, γ∗]), then
C(γ) is closed. Thus, C(γ) is compact. The proof proceeds as
before.
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Application: Unconstrained Quadratic Optimization

Given a symmetric matrix Γ ∈ Rn×n and a vector b ∈ Rn , consider:
minimize 1

2x>Γx − b>x
subject to x ∈ Rn

What are sufficient conditions to guarantee the existence of an
optimal solution?

Answer: If λ is the smallest eigenvalue of Γ, we have

1
2x>Γx − b>x ≥ λ

2 ‖x‖
2 − ‖b‖‖x‖

Thus, if λ > 0, the objective is coercive. This is equivalent to Γ � 0,
i.e., Γ is positive definite.
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Remarks on Existence

The key condition for both theorems is that there exists some γ∗ such
that the sub-level set

C(γ∗) = {x ∈ C : f (x) ≤ γ∗}
is non-empty and compact.

Continuity of f (·) was only used to establish that C(γ) is closed for
γ ≤ γ∗. This is also implied by a weaker condition known as lower
semi-continuity.
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Local Optimality

minimize f (x)
subject to x ∈ C ⊂ Rn

x

f (x)

C

global minimum

local minima

Definition. A point x ∈ C is a local minimum if there exists a
neighborhood Nr(x) such that

f (x) ≤ f (y), ∀ y ∈ C ∩Nr(x).
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Local Optimality

minimize f (x)
subject to x ∈ C ⊂ Rn

x

f (x)

C

global minimum

local minima

unconstrained local minima

Definition. A point x ∈ C is an unconstrained local minimum if there
exists a neighborhood Nr(x) ⊂ C such that

f (x) ≤ f (y), ∀ y ∈ Nr(x).
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Strict Local Optimality

minimize f (x)
subject to x ∈ C ⊂ Rn

Definition. A point x ∈ C is a strict local minimum if there exists a
neighborhood Nr(x) such that

f (x) < f (y), ∀ y ∈ C ∩Nr(x), y 6= x.

Definition. A point x ∈ C is an strict unconstrained local minimum if
there exists a neighborhood Nr(x) ⊂ C such that

f (x) < f (y), ∀ y ∈ Nr(x), y 6= x.
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Local Optimality

f (x + h) ≈ f (x) + f ′(x)h + 1
2 f ′′(x)h2

x

f (x)

x0 x1

Necessary conditions:

f ′(x) = 0

f ′′(x) ≥ 0

Sufficient conditions:

f ′(x) = 0

f ′′(x) > 0
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Background: Differentiation

Consider a real-valued function f : X → R with X ⊂ Rn .

Definition. f (·) is differentiable at the point x ∈ int X if there exists a
vector ∇f (x) ∈ Rn , such that

lim
d→0

f (x + d)− f (x)−∇f (x)>d
‖d‖ = 0.

∇f (x) is known as the gradient.

Definition. f (·) is differentiable over an open set U ⊂ X if it is
differentiable at every point x ∈ U . If, in addition, the components of
the gradient ∇f (x) are continuous over U , we say f (·) is continuously
differentiable over U .
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Background: Differentiation

Note: If f (·) is differentiable at x, then

∇f (x) =
(
∂f (x)
∂x1

, . . . ,
∂f (x)
∂xn

)
∈ Rn ,

where
∂f (x)
∂xi

= lim
h→0

f (x + hei)− f (x)
h .

Here, ei ∈ Rn is the ith coordinate vector.
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Background: The Hessian Matrix

Consider a real-valued function f : X → R with X ⊂ Rn .

Definition. Consider a point x ∈ int X , and suppose that each
component of the vector ∇f (·) is differentiable at x. We say that f (·) is
twice differentiable at x, and define the Hessian to be the matrix
∇2f (x) ∈ Rn×n by

∇2f (x) =
[
∂2f (x)
∂xi∂xj

]

ij

Note: If f (·) is twice continuously differentiable in a neighborhood of
x, then the Hessian is symmetric, i.e.,

∇2f (x) = ∇2f (x)>
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Background: Second Order Taylor Expansion

Consider a real-valued function f : X → R with X ⊂ Rn , and a point
x ∈ int X .

Theorem. Suppose that f (·) is twice continuously differentiable over
a neighborhood Nr(x). Then, for all d ∈ Nr(0),

f (x + d) = f (x) +∇f (x)>d + 1
2d>∇2f (x)d + o(‖d‖2)

Formally, this means that if

R(d) = f (x + d)−
(
f (x) +∇f (x)>d + 1

2d>∇2f (x)d
)
,

then, for every C > 0, there exists a neighborhood Nε(0) and such
that

|R(d)| < C‖d‖2, ∀ d ∈ Nε(0)
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Necessary Conditions for Optimality

minimize f (x)
subject to x ∈ C

Theorem. Let x∗ ∈ int C be an unconstrained local minimum.

(i) Suppose that f (·) is continuously differentiable in a neighborhood
of x∗. Then,

∇f (x∗) = 0 (first order necessary condition)

(ii) If f (·) is twice continuously differentiable in a neighborhood of x∗,
then ∇2f (x∗) is positive semidefinite, i.e.

∇2f (x∗) � 0 (second order necessary condition)
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Necessary Conditions: Proof

(i) Fix d ∈ Rn \ {0}. Note that, by the definition of the gradient,

0 = lim
α→0

f (x∗ + αd)− f (x∗)− α∇f (x∗)>d
α‖d‖

Thus,

lim
α→0

f (x∗ + αd)− f (x∗)
α

= ∇f (x∗)>d

For α sufficiently small, however,

f (x∗ + αd)− f (x∗) ≥ 0
Then,

∇f (x∗)>d ≥ 0
Since d is arbitrary, it follows that ∇f (x∗) = 0.
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Necessary Conditions: Proof

(ii) Fix d ∈ Rn . For α sufficiently small, using a second order
expansion,

f (x∗ + αd)− f (x∗) = α∇f (x∗)>d + 1
2α

2d>∇2f (x∗)d + o(α2)
= 1

2α
2d>∇2f (x∗)d + o(α2)

Then

0 ≤ f (x∗ + αd)− f (x∗)
α2 = 1

2d>∇2f (x∗)d + o(α2)
α2

Taking the limit as α→0, it follows that

0 ≤ d>∇2f (x∗)d
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Sufficient Conditions for Optimality

minimize f (x)
subject to x ∈ C

Theorem. Consider a point x∗ ∈ int C. Suppose that f (·) is twice
continuously differentiable in a neighborhood Nr(x∗) ⊂ C of x∗, and
that

∇f (x∗) = 0, ∇2f (x∗) � 0.
Then, x∗ is a strict unconstrained local minimum.
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Sufficient Conditions: Proof

Let λ > 0 be the smallest eigenvalue of ∇2f (x∗).

Fix d ∈ Nr(0) \ {0},

f (x∗ + d)− f (x∗) = ∇f (x∗)>d + 1
2d>∇2f (x∗)d + o(‖d‖2)

≥ λ

2 ‖d‖
2 + o(‖d‖2)

=
(
λ

2 + o(‖d‖2)
‖d‖2

)
‖d‖2

Pick 0 < ε ≤ r and γ > 0 so that
λ

2 + o(‖d‖2)
‖d‖2 ≥ γ

2 , ∀ d with 0 < ‖d‖ < ε

Then, for all d ∈ Nε(0) \ {0},
f (x∗ + d) ≥ f (x∗) + γ

2‖d‖
2 > f (x∗)

1 – 50



Application of Necessary Conditions

minimize f (x)
subject to x ∈ C

How can we find the optimal solution(s)?
(Assuming f (·) is continuously differentiable on int C)

(i) Check that a global minima exists (e.g., Weierstrass’ Theorem,
coerciveness)

(ii) Find a set of possible unconstrained local minima via the
necessary condition

∇f (x) = 0

(iii) Find the set of “boundary” points C \ int C
(iv) The global minima must be among the points in (ii) and (iii), so

evaluate f (·) at each of these points and find those with the
smallest value
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Application of Necessary Conditions

Example. f : [a, b]→ R continuous on [a, b] and continuously
differentiable on (a, b)

minimize f (x)
subject to x ∈ C

Global minima must exist and are contained in the set

{a, b} ∪ {x ∈ (a, b) : f ′(x) = 0}

Example. Γ ∈ Rn×n , Γ � 0, b ∈ Rn

minimize 1
2x>Γx − b>x

subject to x ∈ Rn

Global minima must exist, and C \ int C is empty, so global minima
must be unconstrained local minima. First order necessary
conditions:

Γx − b = 0 ⇒ x∗ = Γ−1b
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Application of Necessary Conditions

The necessary conditions for unconstrained local optima are only
useful if the boundary C \ int C is empty or “small”, or if the (for other
reasons) we know the global minima will not occur on the boundary.

Example. (Portfolio optimization)

minimize x>Γx
subject to 1>x = 1,

µ>x = µ̄,
x ≥ 0,
x ∈ Rn

The interior of the constraint
set is empty, no unconstrained
local optima!
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Sensitivity Analysis

Consider a function f : Rn × Rm → R, and, for a fixed a ∈ Rm , the
unconstrained optimization problem

minimize f (x, a)
subject to x ∈ Rn

Denote by x∗(a) a local minimizer, assuming it exists, and define
f ∗(a) , f (x∗(a), a).

a is a parameter vector. We would like to understand how the local
minimum x∗(a) and the associated value f ∗(a) are sensitive to
changes in a.
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Differentiation of Vector-Valued Functions

Consider a vector-valued function F : X → Rm , X ⊂ Rn , and a point
x ∈ int X . We can analyze F(·) in terms of component functions
Fi : X → R by

F(x) = (F1(x), . . . ,Fm(x)) .

Definition. F(·) is differentiable at the point x each component
function Fi(·) is differentiable at x. We define the gradient to be the
matrix ∇F(x) ∈ Rn×m with

∇F(x) = [∇F1(x), . . . ,∇Fm(x)]

If F(·) is differentiable at x, then

∇F(x)ij = ∂Fj(x)
∂xi
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Differentiation of Vector-Valued Functions

Theorem. (Chain Rule) If f : X → Rm , X ⊂ Rn , is differentiable at
x ∈ int X and g : Y → Rp, Y ⊂ Rm , is differentiable at f (x) ∈ int Y,
then the composition

h(x) = g(f (x))
is differentiable at x, and

∇h(x) = ∇f (x)∇g(f (x))
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Non-rigorous Sensitivity Analysis

minimize f (x, a)
subject to x ∈ Rn

x∗(a) = local minimum
f ∗(a) = f (x∗(a), a)

First order conditions: ∇x f (x∗(a), a) = 0

Taking derivatives: ∇x∗(a)∇2
xx f (x∗(a), a) +∇2

xaf (x∗(a), a) = 0

Sensitivity of local minimum:

∇x∗(a) = −∇2
xaf (x∗(a), a)

(
∇2

xx f (x∗(a), a)
)−1

Sensitivity of value:
∇f ∗(a) = ∇x∗(a)∇x f (x∗(a), a) +∇af (x∗(a), a)

= ∇af (x∗(a), a)
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Implicit Function Theorem

Theorem. Let F : Rn × Rm → Rn be a function with

(i) F(x̄, ȳ) = 0
(ii) F(·, ·) is continuous and has a continuous and invertible gradient

matrix ∇xF(x, y) in an open set containing (x̄, ȳ)
Then, there exist open sets Ux ⊂ Rn and Uy ⊂ Rm with x ∈ Ux and
y ∈ Uy and a continuous function φ : Uy → Ux such that

(i) x̄ = φ(ȳ) and F(φ(y), y) = 0 for all y ∈ Uy

(ii) The function φ(·) is unique in the sense that, if x ∈ Ux , y ∈ Uy, and
F(x, y) = 0, then x = φ(y)

(iii) If F(·, ·) is k times continuously differentiable the same is true for
φ(·), and

∇φ(y) = −∇yF(φ(y), y) (∇xF(φ(y), y))−1 , ∀ y ∈ Uy
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Computational Methods

f : Rn → R
minimize f (x)
subject to x ∈ Rn

Two types of analysis:

Analytical. Use necessary and sufficient conditions to
analytically solve for optimal solutions, or establish structural
properties of optimal solutions.

Numerical. Use necessary and sufficient conditions to
numerically solve for optimal solutions.
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Computational Methods

f : Rn → R
minimize f (x)
subject to x ∈ Rn

Suppose f (·) is differentiable at x ∈ Rn , and d ∈ Rn is a vector with
∇f (x)>d < 0. Then,

lim
α↓0

f (x + αd)− f (x)
α

= ∇f (x)>d < 0

Thus, d is a descent direction and there exists ε > 0 such that for all
0 < α ≤ ε,

f (x + αd) < f (x)

1 – 60



Gradient Methods

f : Rn → R
minimize f (x)
subject to x ∈ Rn

Pick starting point x(0) ∈ Rn

For each k ≥ 0, pick a descent direction d(k) ∈ Rn with
∇f (x(k))>d(k) < 0 and a step-size αk > 0, set

x(k+1) = x(k) + αkd(k)

Stop according to a termination criteria, for example when

‖∇f (x(k))‖ < δ,

for some tolerance δ > 0.

1 – 61

Gradient Methods

f : Rn → R
minimize f (x)
subject to x ∈ Rn

Steepest descent

x(k+1) = x(k) − αk∇f (x(k))

Newton’s method

x(k+1) = x(k) − αk
(
∇2f (x(k))

)−1
∇f (x(k))
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2. Necessary conditions for equality constraints

3. Lagrangian cookbook recipe

4. Sufficient conditions for equality constraints
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Constrained Local Optimality

minimize f (x)
subject to x ∈ C ⊂ Rn

Definition. A point x ∈ C is a local minimum if there exists a
neighborhood Nr(x) such that

f (x) ≤ f (y), ∀ y ∈ C ∩Nr(x).

We are interested in characterizing local minima that are not in int C.
The constraint set plays an fundamental role in this case.

2 – 3

Constrained Local Optimality

minimize f (x)
subject to x ∈ C ⊂ Rn

If f (·) is differentiable at a point x∗ ∈ C, and d ∈ Rn , then

lim
α↓0

f (x∗ + αd)− f (x∗)
α

= ∇f (x∗)>d

If x∗ is a local minimum and d is a “feasible” direction, then

0 ≤ ∇f (x∗)>d
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The Descent and Tangent Cones

minimize f (x)
subject to x ∈ C ⊂ Rn

x∗ ∈ C, f (·) continuously differentiable in a
neighborhood of x∗

Definition. The set of descent directions of the objective function f (·)
at x∗ is the set

D(x∗) = {d ∈ Rn : ∇f (x∗)>d < 0}

Definition. The tangent cone T (x∗) of the constraint set C at x∗ is the
set of directions d ∈ Rn such that either

(i) d = 0
(ii) there exists a sequence {xk} ⊂ C with xk→x∗ and

xk − x∗
‖xk − x∗‖ →

d
‖d‖

2 – 5

Local Optimality Necessary Condition

minimize f (x)
subject to x ∈ C ⊂ Rn

x∗ ∈ C, f (·) continuously differentiable in a
neighborhood of x∗

Theorem. If x∗ is a local minimum, then there is no descent direction
in the tangent cone. That is,

D(x∗) ∩ T (x∗) = ∅
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Local Optimality Necessary Condition: Proof

Consider d ∈ T (x∗) \ {0}. There exists {xk} ⊂ C, xk 6= x∗, xk → x∗
such that

xk − x∗
‖xk − x∗‖ →

d
‖d‖

Define

ζk , xk − x∗
‖xk − x∗‖ −

d
‖d‖ , dk , d + ‖d‖ζk

Then, ζk→0 and dk→d.

By the mean value theorem,

f (xk) = f (x∗) +∇f (x̃k)>(xk − x∗)
where x̃k is a point on the line segment between xk and x∗.

2 – 7

Local Optimality Necessary Condition: Proof

Equivalently,

f (xk) = f (x∗) + ‖xk − x∗‖
‖d‖ ∇f (x̃k)>dk

If d ∈ D(x∗), then ∇f (x∗)>d < 0. Thus, for k sufficiently large,
∇f (x̃k)>dk < 0. Then,

f (xk) < f (x∗),

which contradicts local minimality of x∗.
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Equality Constrained Optimization

Consider
minimize f (x)
subject to h1(x) = 0, . . . , hm(x) = 0,

x ∈ Rn

where

f : Rn → R, hi : Rn → R, ∀ 1 ≤ i ≤ m

Assume that f (·) and {hi(·)} are continuously differentiable on Rn

The necessary and sufficient conditions are also true if these
functions are just defined and continuously differentiable in a
neighborhood of the local minimum

2 – 9

Equality Constrained Optimization

f : Rn → R
h : Rn → Rm

minimize f (x)
subject to h(x) = 0,

x ∈ Rn

Assume that x∗ is a feasible point and d ∈ Rn is a direction. For small
α > 0,

h(x∗ + αd) ≈ h(x∗) +∇h(x∗)>(αd) = α∇h(x∗)>d

Definition. The cone of first order feasible variations at a point
x∗ ∈ Rn is the set

V(x∗) = {d ∈ Rn : ∇h(x∗)>d = 0}

Note: If d ∈ V(x∗), then −d ∈ V(x∗). Indeed, V(x∗) is a subspace of
Rn .
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Regularity

f : Rn → R
h : Rn → Rm

minimize f (x)
subject to h(x) = 0,

x ∈ Rn

Definition. A point x∗ ∈ Rn is a regular point if it is feasible and if the
constraint gradients

∇h1(x∗), . . . ,∇hm(x∗)
are linearly independent.

Note: If m > n, no regular points exist.

If m = 1, regularity is equivalent to ∇h1(x∗) 6= 0.

2 – 11

Regularity Lemma

f : Rn → R
h : Rn → Rm

minimize f (x)
subject to h(x) = 0,

x ∈ Rn

Lemma. Let x∗ be a regular point. Then,
(i) For each d ∈ V(x∗), there exists τ > 0 and a curve

x : (−τ, τ)→ Rn such that

(a) x(0) = x∗, h(x(t)) = 0 for t ∈ (−τ, τ)
(b) x(·) is continuously differentiable, and ẋ(0) = d
(c) if h(·) is twice continuously differentiable, then so is x(·)

(ii) T (x∗) = V(x∗)
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Regularity Lemma: Proof

(i) Fix d ∈ V(x∗). Given a scalar t, consider the m equations

h
(
x∗ + td +∇h(x∗)u(t)

)
= 0

for an unknown u(t) ∈ Rm . For t = 0, this has solution u(0) = 0. The
gradient w.r.t. u is at t = 0, u = 0 is

∇h(x∗)>∇h(x∗)
This is invertible since the columns of ∇h(x∗) are linearly
independent. By the implicit function theorem, for some τ > 0, a
solution u(t) exists for t ∈ (−τ, τ).

Define x(t) , x∗ + td +∇h(x∗)u(t). Differentiating h(x(t)) = 0 at with
respect to u at t = 0,

0 = d>∇h(x∗) + u̇(0)>∇h(x∗)>∇h(x∗)
Since d ∈ V(x∗), ∇h(x∗)>∇u̇(0) = 0. Then, u̇(0) = 0 thus ẋ(0) = d.

2 – 13

Regularity Lemma: Proof

(ii) V(x∗) ⊂ T (x∗): If d ∈ V(x∗) \ {0}, define x(t) from (i), and there
exists a sequence tk ⊂ (0, τ), tk→0, with xk , x(tk) 6= x∗. Then,

xk − x∗
‖xk − x∗‖ →

ẋ(0)
‖ẋ(0)‖ = d

‖d‖
by the mean value theorem applied to x(t).

T (x∗) ⊂ V(x∗): Consider d ∈ T (x∗) \ {0}, and an associated {xk}. By
the mean value theorem,

0 = h(xk) = h(x∗) +∇h(x̃k)>(xk − x∗)
Thus,

∇h(x̃k)> xk − x∗
‖xk − x∗‖ = 0

Take the limit as k→∞.
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Local Optimality Necessary Condition

f : Rn → R
h : Rn → Rm

minimize f (x)
subject to h(x) = 0,

x ∈ Rn

Theorem. If x∗ is a local minimum that is a regular point, then

∇f (x∗)>d = 0
for all directions d ∈ V(x∗). In particular, there is no descent direction
that is a first order feasible variation.

Proof. Since T (x∗) = V(x∗), we have D(x∗) ∩ V(x∗) = ∅. Assume
d ∈ V(x∗). Then ∇f (x∗)>d ≥ 0. Since −d ∈ V(x∗), the result
follows.

2 – 15

A Linear Algebra Lemma

Definition. Consider a matrix A ∈ Rm×n . The kernel (nullspace) is the
set

ker A , {x ∈ Rn : Ax = 0}
The image (range) is the set

im A , {y ∈ Rm : y = Ax, x ∈ Rn}

Definition. Given a set S ⊂ Rn , the orthogonal complement is defined
to be the set

S⊥ , {x ∈ Rn : x>y = 0, ∀ y ∈ S}

Lemma. If A ∈ Rm×n is a matrix, then im A = [ker (A>)]⊥.

In other words, given z ∈ Rm ,

z = Ax for some x ∈ Rn ⇔ z>y = 0 for all y with A>y = 0
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Linear Algebra Lemma: Proof

Note that if S ⊂ Rk is a subspace, then (S⊥)⊥ = S. So, we will prove
ker (A>) = [im A]⊥.

ker (A>) ⊂ [im A]⊥:

If z ∈ ker (A>) and y ∈ im A. Then, y = Ax for some x ∈ Rn , and

z>y = z>Ax = 0 ⇒ z ∈ [im A]⊥

[im A]⊥ ⊂ ker (A>):
If z ∈ [im A]⊥, then

z>Ax = 0, ∀ x ∈ Rn ⇒ (A>z)>x = 0, ∀ x ∈ Rn ⇒ A>z = 0

⇒ z ∈ ker (A>)

2 – 17

Linear Algebra Lemma & Local Optimality

Our local optimality necessary condition was, for a regular point x∗,
∇f (x∗)>d = 0, ∀ d ∈ V(x∗)

In other words,

∇f (x∗) ∈ V(x∗)⊥ = [ker∇h(x∗)>]⊥ ⇒ ∇f (x∗) ∈ im∇h(x∗)

Equivalently, there exists λ ∈ Rm such that

∇f (x∗) +∇h(x∗)λ = 0
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Lagrange Multiplier Theorem: Necessary Conditions

f : Rn → R
h : Rn → Rm

minimize f (x)
subject to h(x) = 0,

x ∈ Rn

Theorem. If x∗ is a local minimum that is a regular point, then there
exists a unique vector λ∗ ∈ Rm called a Lagrange multiplier, such that

∇f (x∗) +
m∑

i=1
λ∗i∇hi(x∗) = 0.

If, in addition, f (·) and h(·) are twice continuously differentiable,

d>
(
∇2f (x∗) +

m∑

i=1
λ∗i∇2hi(x∗)

)
d ≥ 0, ∀ d ∈ V(x∗).

2 – 19

Necessary Conditions: Proof

First order conditions: existence of λ∗ follows from earlier discussion,
λ∗ is unique since the columns of ∇h(x∗) are linearly independent.

Second order conditions: consider d ∈ V(x∗). Define the path x(t) by
the regularity lemma with h(x(t)) = 0, x(0) = x∗, ẋ(0) = d. If
g(t) , f (x(t)), t = 0 must be an unconstrained local minimum of g(t).
Then,

0 ≤ g̈(0) = ẋ(0)>∇2f (x∗)ẋ(0) + ẍ(0)>∇f (x∗)
= d>∇2f (x∗)d + ẍ(0)>∇f (x∗)

Differentiate `(t) , λ∗>h(x(t)) = 0 twice at t = 0 to obtain

0 = ῭(0) = d>
( m∑

i=1
λi∇2hi(x∗)

)
d + ẍ(0)>∇h(x∗)λ∗
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Lagrange Multiplier Theorem: Interpretation

Definition. The Lagrangian function L : Rn × Rm → R is defined by

L(x, λ) = f (x) +
m∑

i=1
λihi(x) = f (x) + λ>h(x)

The necessary conditions can written as
∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0,

d>∇2
xxL(x∗, λ∗)d ≥ 0, ∀ d ∈ V(x∗).

Geometric interpretation

Penalty function interpretation

2 – 21

The Lagrangian Cookbook Recipe

f : Rn → R
h : Rn → Rm

minimize f (x)
subject to h(x) = 0,

x ∈ Rn

L(x, λ) = f (x) +
m∑

i=1
λihi(x)

(i) Check that a global minima exists

(ii) Find the set of (x∗, λ∗) satisfying the necessary conditions

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0

(iii) Find the set of non-regular points

(iv) The global minima must be among the points in (ii) and (iii)

(Assuming f (·), h(·) continuously differentiable on Rn )
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Example

minimize f (x) = x1 + x2
subject to h1(x) = x2

1 + x2
2 − 2 = 0,

x ∈ R2

Objective & constraints continuously differentiable

Global minima exist (Weierstrass)

First order conditions:
1 + 2λ∗x∗1 = 0
1 + 2λ∗x∗2 = 0

(x∗1 )2 + (x∗2 )2 = 2
(x∗1 , x∗2 , λ∗) =

{
(−1,−1, 1

2)
(1, 1,−1

2)

Regularity: ∇h1(x) = (2x1, 2x2) 6= 0 Global minimum: x∗ = (−1,−1)

2 – 23

Example: Maximum Volume Box

maximize f (x) = x1x2x3
subject to h1(x) = x1x2 + x2x3 + x1x3 − c/2 = 0, (c > 0)

x ≥ 0, x ∈ R3

Objective & equality constraints continuously differentiable

Global maxima exist (why?), must have x∗ > 0
First order conditions: (when x∗ > 0)

x∗2 x∗3 + λ∗(x∗2 + x∗3 ) = 0
x∗1 x∗3 + λ∗(x∗1 + x∗3 ) = 0
x∗1 x∗2 + λ∗(x∗1 + x∗2 ) = 0

x∗1 x∗2 + x∗2 x∗3 + x∗1 x∗3 = c/2

x∗1 = x∗2 = x∗3 =
√

c/6

λ∗ = −1
2

√
c/6

Regularity: ∇h1(x) = (x2 + x3, x1 + x3, x1 + x2) 6= 0 if x > 0
Unique global maximum: x∗1 = x∗2 = x∗3 =

√
c/6
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Example

minimize f (x) = x1 + x2
subject to h1(x) = (x1 − 1)2 + x2

2 − 1 = 0
h2(x) = (x1 − 2)2 + x2

2 − 4 = 0
x ∈ R2

x∗ = (0, 0) is the only feasible point, thus global minimum

First order conditions:
1 + 2λ∗1(x∗1 − 1) + 2λ∗2(x∗1 − 2) = 0

1 + 2λ∗1x∗2 + 2λ∗2x∗2 = 0
(x∗1 − 1)2 + (x∗2 )2 = 1
(x∗1 − 2)2 + (x∗2 )2 = 4

No solution to necessary
conditions!

Regularity:
∇h1(x) = (2x1 − 2, 2x2) ∇h2(x) = (2x1 − 4, 2x2)

x∗ = (0, 0) is not regular!

2 – 25

Constraint Qualification

Let x∗ be a local minimum.

Constraint qualification refers to conditions on the constraints that
guarantee the existence of Lagrange multipliers satisfying necessary
conditions at x∗. Examples:

Regularity

Linear constraints [homework!]

More generally:

D(x∗) ∩ T (x∗) = ∅ (since x∗ is a local minimum)

D(x∗) ∩ V(x∗) = ∅ implies the existence of Lagrange multipliers

Quasi-regularity: V(x∗) = T (x∗)
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Regularity

Note: Regularity is a property of the representation of constraints, not
the constraint set.

Example. h(x) = x1 ⇒ C = {x ∈ R2 : h(x) = 0} = {(x1, x2) : x1 = 0}
All points in C are regular.

Example.
h(x) = x2

1 ⇒ C = {x ∈ R2 : h(x) = 0} = {(x1, x2) : x1 = 0}
No points in C are regular.

2 – 27

Lagrange Multiplier Theorem: Sufficient Conditions

f : Rn → R
h : Rn → Rm

minimize f (x)
subject to h(x) = 0,

x ∈ Rn

L(x, λ) = f (x) +
m∑

i=1
λihi(x)

Theorem. Assume that f (·) and h(·) are twice continuously
differentiable, and that x∗ ∈ Rn and λ∗ ∈ Rm satisfy

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0,
d>∇2

xxL(x∗, λ∗)d > 0, ∀ d ∈ V(x∗) \ {0}.
Then, x∗ is a strict local minimum.
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Sufficient Conditions: Proof

Clearly x∗ is feasible. Suppose x∗ is not a strict local minimum.
Then, there exists {xk} ⊂ Rn , h(xk) = 0, xk 6= x∗, xk → x∗, with
f (xk) ≤ f (x∗). Define

dk = xk − x∗
‖xk − x∗‖ , δk = ‖xk − x∗‖

Then δk → 0, and {dk} must have a subsequence converging to some
d with ‖d‖ = 1. WLOG, assume dk → d.

By the mean value theorem, there exists x̃k between x∗ and xk with

h(xk) = h(x∗) +∇h(x̃k)>(δkdk) ⇒ ∇h(x̃k)>dk = 0
Taking a limit as k →∞, ∇h(x∗)>d = 0. Thus, d ∈ V(x∗).
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Sufficient Conditions: Proof

By the second order Taylor expansion (with remainder),

0 = hi(xk) = hi(x∗) + δk∇hi(x∗)>dk + 1
2δ

2
kd>k ∇2hi(x̂i,k)dk

0 ≥ f (xk)− f (x∗) = δk∇f (x∗)>dk + 1
2δ

2
kd>k ∇2f (x̂0,k)dk

(Each x̂i,k is a point on the line segment between xk and x∗.)

Adding these two equations and using the fact that ∇xL(x∗, λ∗) = 0,

0 ≥ 1
2δ

2
kd>k

(
∇2f (x̂0,k) +

m∑

i=1
λi∇2hi(x̂i,k)

)
dk

Dividing by 1
2δ

2
k and taking a limit as k →∞, we have

0 ≥ d>
(
∇2f (x∗) +

m∑

i=1
λi∇2hi(x∗)

)
d

Since d ∈ V(x∗) \ {0}, this contradicts the assumed second order
condition.

2 – 30



Lagrange Multiplier Theorem: Sensitivity Analysis

Consider a family of problems, parameterized by u ∈ Rm :

f : Rn → R
h : Rn → Rm

minimize f (x)
subject to h(x) = u,

x ∈ Rn

Theorem. Suppose there exists a local minimum-Lagrange multiplier
pair (x∗, λ∗) satisfying the second order sufficient conditions when
u = 0, with x∗ regular. Then, there exists a neighborhood Nε(0) ⊂ Rm

of u = 0 and a function x∗(·) defined on Nε(0) such that

(i) x∗(0) = x∗, and for each u ∈ Nε(0), x∗(u) is a strict local minimum

(ii) x∗(·) is continuously differentiable

(iii) If p(u) = f (x∗(u)), then

∇p(0) = −λ∗

2 – 31

Sensitivity Analysis: Proof

(i) & (ii): Consider, for u ∈ Rm the following system of equations in
(x, λ):

∇f (x) +∇h(x)λ = 0, h(x) = u.
At u = 0, this has the gradient[

∇2
xxL(x∗, λ∗) ∇h(x∗)
∇h(x∗)> 0

]

which is non-singular by the second order sufficient conditions. By
the implicit function theorem, we can define (x∗(u), λ∗(u)) satisfying
the first order conditions for all u in some Nε(0). Second order
sufficient conditions follow for u sufficiently close to zero from
continuity assumptions.
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Sensitivity Analysis: Proof

(iii): Note that, for u ∈ Nε(0),
∇x∗(u)∇f (x∗(u)) +∇x∗(u)∇h(x∗(u))λ∗(u) = 0

Differentiating h(x∗(u)) = u,

I = ∇u{h(x∗(u))} = ∇x∗(u)∇h(x∗(u))
Then,

∇p(u) = ∇x∗(u)∇f (x∗(u)) = −λ∗(u)
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Application: Portfolio Optimization

Consider the portfolio optimization problem without short sale
constraints:

σ2 = minimize x>Γx
subject to 1>x = 1,

µ>x = µ̄,
x ∈ Rn

Here, we assume that Γ � 0 and 1 and µ are linearly independent.
First order conditions:

2Γx∗ + λ∗11 + λ∗2µ = 0, 1>x∗ = 1, µ>x∗ = µ̄

Then,

x∗ = −1
2Γ−11λ∗1 − 1

2Γ−1µλ∗2

1 = 1>x∗ = −1
21>Γ−11λ∗1 − 1

21>Γ−1µλ∗2

µ̄ = µ>x∗ = −1
2µ
>Γ−11λ∗1 − 1

2µ
>Γ−1µλ∗2
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Application: Portfolio Optimization

The system of equations for (λ∗1, λ∗2) is non-singular if 1 and µ are
linearly independent and Γ � 0, so

λ∗1 = η1 + ζ1µ̄, λ∗2 = η2 + ζ2µ̄

for some scalars η1, η2, ζ1, ζ2 (depending on Γ and µ)

⇒ x∗ = µ̄v + w
for some vectors v, w (depending on Γ and µ)

⇒ σ2 = (µ̄v + w)>Γ(µ̄v + w) = (αµ̄+ β)2 + γ

for some scalars α, β, γ (depending on Γ and µ)
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Inequality Constrained Optimization

Consider
minimize f (x)
subject to h1(x) = 0, . . . , hm(x) = 0,

g1(x) ≤ 0, . . . , gr(x) ≤ 0,
x ∈ Rn

where

f : Rn → R, hi : Rn → R, gj : Rn → R

Assume that f (·), {hi(·)}, {gj(·)} are continuously differentiable
on Rn

The necessary and sufficient conditions are also true if these
functions are just defined and continuously differentiable in a
neighborhood of the local minimum

3 – 3

Reduction to Equality Constraints

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Rn

Definition. Given a feasible point x∗ ∈ Rn , the set of active inequality
constraints A(x∗) is defined by

A(x∗) , {j : gj(x∗) = 0} ⊂ {1, . . . , r}
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Reduction to Equality Constraints

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Rn

Lemma. Let x∗ be a local minimum for the inequality constrained
program (ICP). Then, it is also a local minimum for the equality
constrained program (ECP)

minimize f (x)
subject to h(x) = 0,

gj(x) = 0, j ∈ A(x∗)
x ∈ Rn

3 – 5

Reduction to Equality Constraints: Proof

Suppose x∗ is not a local minimum for (ECP). Then, there is a
sequence of points {xk} feasible for (ECP), such that xk → x, and
f (xk) < f (x∗).

Since g(·) is continuous, we have g(xk)→ g(x∗). In particular, if
j /∈ A(x∗),

gj(xk)→ gj(x∗) < 0
Thus, for k sufficiently large, gj(xk) < 0 and xk is feasible for (ICP). This
contradicts the local optimality of x∗ for (ICP).
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Regularity

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Rn

Definition. A point x∗ ∈ Rn is a regular point if it is feasible and if the
set of constraint gradients

{∇hi(x∗) : 1 ≤ i ≤ m} ∪ {∇gj(x∗) : j ∈ A(x∗)}
are linearly independent.

Definition. The cone VEQ(x∗) at a point x∗ ∈ Rn is the set of vectors
d ∈ Rn such that

∇hi(x∗)>d = 0, ∀ 1 ≤ i ≤ m, ∇gj(x∗)>d = 0, ∀ j ∈ A(x∗).

3 – 7

Karush-Kuhn-Tucker Theorem: Necessary Conditions

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Rn

Theorem. If x∗ is a local minimum that is a regular point, then there
exists a unique Lagrange multiplier vectors λ∗ ∈ Rm and µ∗ ∈ Rr ,
such that

∇f (x∗) +
m∑

i=1
λ∗i∇hi(x∗) +

r∑

j=1
µ∗i∇gj(x∗) = 0,

µ∗j ≥ 0, ∀ 1 ≤ j ≤ r , µ∗j = 0, ∀ j /∈ A(x∗).
If, in addition, f (·), h(·), and g(·) are twice continuously differentiable,
for all d ∈ VEQ(x∗),

d>

∇2f (x∗) +

m∑

i=1
λ∗i∇2hi(x∗) +

r∑

j=1
µ∗j∇2gj(x∗)


 d ≥ 0

3 – 8



Necessary Conditions: Proof

Everything follows by apply the necessary conditions from the
Lagrange multiplier theorem to the equality constrained program
defined by the active constraints, except the assertion that µ∗j ≥ 0, for
j ∈ A(x∗).

Suppose this does not hold for some j. Then, let Cj ⊂ Rn be the set of
points feasible for all other active constraints,

Cj ,
{

x : h(x) = 0, gk(x) = 0, ∀ ` ∈ A(x∗) \ {j}
}

and VEQ
j (x∗) the corresponding cone of first order feasible directions,

VEQ
j (x∗) ,

{
d : ∇h(x∗)>d = 0, ∇gk(x∗)> = 0, ∀ ` ∈ A(x∗) \ {j}

}

By regularity, there exists d ∈ VEQ
j (x∗) with ∇gj(x∗)>d < 0.
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Necessary Conditions: Proof

Then, there exists a curve x(t) ∈ Cj with x(0) = x∗, ẋ(0) = d. For small
t, x(t) is feasible and if `(t) , f (x(t))

˙̀(0) = d>∇f (x∗) = −d>(∇h(x∗)λ∗ −∇g(x∗)µ∗)
= −d>∇gj(x∗)µ∗j < 0,

contradicting the local optimality of x∗.
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KKT Theorem: Interpretation

Definition. The Lagrangian function L : Rn ×Rm ×Rr → R is defined
by

L(x, λ, µ) = f (x) +
m∑

i=1
λihi(x) +

r∑

j=1
µjgj(x)

= f (x) + λ>h(x) + µ>g(x)

The first order necessary conditions can be written as:

∇xL(x∗, λ∗, µ∗) = 0, h(x∗) = 0, g(x∗) ≤ 0,

µ∗ ≥ 0,
µ∗j gj(x∗) = 0, ∀ 1 ≤ j ≤ r

The second order necessary conditions can be written as:

d>∇2
xxL(x∗, λ∗, µ∗)d ≥ 0, ∀ d ∈ VEQ(x∗)
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KKT Cookbook Recipe

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Rn

L(x, λ, µ) = f (x) + λ>h(x) + µ>g(x)

(i) Check that a global minima exists

(ii) Find the set of (x∗, λ∗, µ∗) satisfying the necessary conditions

∇xL(x∗, λ∗, µ∗) = 0, h(x∗) = 0, g(x∗) ≤ 0,
µ∗ ≥ 0, µ∗j gj(x∗) = 0, ∀ 1 ≤ j ≤ r

(iii) Find the set of non-regular points

(iv) The global minima must be among the points in (ii) and (iii)

(Assuming f (·), h(·), g(·) continuously differentiable on Rn )
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Example

minimize 1
2(x2

1 + x2
2 + x2

3 )
subject to x1 + x2 + x2 ≤ −3,

x ∈ R3

Objective & constraints continuously differentiable

Global minima exist (coerciveness)

First order conditions:
x∗1 + µ∗ = 0
x∗2 + µ∗ = 0
x∗3 + µ∗ = 0

x∗1 + x∗2 + x∗2 ≤ −3
µ∗(x∗1 + x∗2 + x∗2 + 3) = 0

x∗ = (−1,−1,−1)

µ∗ = 1

All points are regular

Global minimum: x∗ = (−1,−1,−1)
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KKT Theorem: Sufficient Conditions

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Rn

Theorem. Assume that f (·), h(·) and g(·) are twice continuously
differentiable, and that x∗ ∈ Rn , λ∗ ∈ Rm , µ∗ ∈ Rr satisfy

∇xL(x∗, λ∗, µ∗) = 0, h(x∗) = 0, g(x∗) ≤ 0,
µ∗ ≥ 0, µ∗j = 0, ∀ j /∈ A(x∗),

d>∇2
xxL(x∗, λ∗)d > 0, ∀ d ∈ VEQ(x∗) \ {0}

Assume also that
µ∗j > 0, ∀ j ∈ A(x∗)

Then, x∗ is a strict local minimum.
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Sufficient Conditions: Proof

Following the equality case: Suppose x∗ is not a strict local minimum.
Then, there exists {xk} ⊂ Rn , h(xk) = 0, g(xk) ≤ 0, xk 6= x∗, xk → x∗,
with f (xk) ≤ f (x∗). Define

dk = xk − x∗
‖xk − x∗‖ , δk = ‖xk − x∗‖

Then δk → 0, and {dk} must have a subsequence converging to some
d with ‖d‖ = 1. WLOG, assume dk → d.

As in the equality case, ∇h(x∗)>d = 0. If j ∈ A(x∗), by the mean value
theorem,

gj(xk)− gj(x∗) ≤ 0 ⇒ ∇gj(x∗)>d ≤ 0

If ∇gj(x∗)>d = 0 for all j ∈ A(x∗), then d ∈ VEQ(x∗), and we proceed
as before.
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Sufficient Conditions: Proof

Suppose for some j ∈ A(x∗), ∇gj(x∗)>d < 0. Then,

d>∇f (x∗) = −d>(∇h(x∗)λ∗ +∇g(x∗)µ∗) > 0

However, by the mean value theorem,

f (xk)− f (x∗) ≤ 0 ⇒ ∇f (x∗)>d ≤ 0
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KKT Theorem: Sensitivity Analysis

Consider a family of problems, parameterized by u ∈ Rm and v ∈ Rr :

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = u,

g(x) ≤ v,
x ∈ Rn

Theorem. Suppose there exists a triple (x∗, λ∗, µ∗) satisfying the
second order sufficient conditions when (u, v) = (0, 0), with x∗ regular.
Then, there exists a neighborhood N of (u, v) = (0, 0) and a function
x∗(·, ·) defined on N such that

(i) x∗(0, 0) = x∗, and for each (u, v) ∈ N , x∗(u, v) is a strict local
minimum

(ii) x∗(·, ·) is continuously differentiable

(iii) If p(u, v) = f (x∗(u, v)), then

∇up(0, 0) = −λ∗, ∇vp(0, 0) = −µ∗
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Geometric Interpretation

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Rn

Assume that x∗ is a feasible point and d ∈ Rn is a direction. For small
α > 0,

h(x∗ + αd) ≈ h(x∗) +∇h(x∗)>(αd) = α∇h(x∗)>d
If j ∈ A(x∗),

g(x∗ + αd) ≈ g(x∗) +∇g(x∗)>(αd) = α∇g(x∗)>d

Definition. The cone of first order feasible variations at a point
x∗ ∈ Rn is the set

V(x∗) = {d ∈ Rn : ∇h(x∗)>d = 0, ∇gj(x∗)>d ≤ 0, ∀ j ∈ A(x∗)}
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Farkas’ Lemma

Lemma. (Farkas) Consider a matrix A ∈ Rm×n . Then, a vector z ∈ Rm

satisfies

z>y ≤ 0 for all y ∈ Rm with A>y ≤ 0
if and only if

z = Ax for some x ∈ Rn with x ≥ 0
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Existence of Lagrange Multipliers

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Rn

Theorem. Let x∗ be a local minimum. Then there exist Lagrange
multipliers (λ∗, µ∗) satisfying

∇f (x∗) +∇h(x∗)λ∗ +∇g(x∗)µ∗ = 0,
µ∗ ≥ 0, µ∗j gj(x∗) = 0, ∀ 1 ≤ j ≤ r ,

if and only if

D(x∗) ∩ V(x∗) = ∅.
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Existence of Lagrange Multipliers: Proof

Suppose there are no equality constraints. Then,

D(x∗) ∩ V(x∗) = ∅
is equivalent to

∇f (x∗)>d ≥ 0 for all d such that ∇gj(x∗)>d ≤ 0, ∀ j ∈ A(x∗)

By Farkas’ Lemma, this is equivalent to

∇f (x∗) +∇g(x∗)µ = 0
for some µ with µ ≥ 0 and µj = 0 if j /∈ A(x∗).

If there are equality constraints h(x) = 0, we can add inequality
constraints h(x) ≤ 0 and −h(x) ≤ 0.
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Constraint Qualification

Let x∗ be a local minimum.

D(x∗) ∩ T (x∗) = ∅ (since x∗ is a local minimum)

D(x∗) ∩ V(x∗) = ∅ implies the existence of Lagrange multipliers

Quasiregularity: V(x∗) = T (x∗)

Corollary. Let x∗ be a local minimum that is quasiregular. Then,
Lagrange multipliers exists satisfying the KKT first order necessary
conditions.
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Linear Constraint Qualification

f : Rn → R
A ∈ Rm×n , b ∈ Rm

minimize f (x)
subject to Ax ≤ b,

x ∈ Rn

Theorem. Suppose that x∗ is a local minimum. Then, x∗ is
quasiregular and Lagrange multipliers exist.

Note: Trivially applies to linear equality constraints also. Can be
extended to linear equality constraints and concave inequality
constraints.
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Linear Constraint Qualification: Proof

V(x∗) ⊂ T (x∗) : If d ∈ V(x∗) \ {0}, consider the sequence defined by

xk , x∗ + d/k
If j /∈ A(x∗), then

A>j xk < bj + A>j d/k → bj

If j ∈ A(x∗), then

A>j xk = bj + A>j d/k = bj

Thus, for k sufficiently large, xk is feasible. Further,
xk − x∗
‖xk − x∗‖ →

d
‖d‖
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Linear Constraint Qualification: Proof

T (x∗) ⊂ V(x∗) : If d ∈ V(x∗) \ {0}, let {xk} be the a sequence with
xk → x∗ and

xk − x∗
‖xk − x∗‖ →

d
‖d‖

Define

ζk , xk − x∗
‖xk − x∗‖ −

d
‖d‖ , dk , d + ‖d‖ζk

Then, ζk→0 and dk→d, and

xk − x∗ = ‖xk − x∗‖
‖d‖ dk

If j ∈ A(x∗), then

0 ≥ A>j (xk − x∗) = ‖xk − x∗‖
‖d‖ A>j dk → A>j d
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A General Sufficiency Condition

f : Rn → R
g : Rn → Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0,

x ∈ Ω

Theorem. Let x∗ ∈ Rn be a feasible point and µ∗ ∈ Rr be a vector
such that

µ∗ ≥ 0,
µ∗j = 0, ∀ j /∈ A(x∗),

x∗ ∈ argmin
x∈Ω

L(x, µ∗)

Then, x∗ is a global minimum.

Note: No differentiability or continuity assumptions made!
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A General Sufficiency Condition: Proof

f (x∗) = f (x∗) + (µ∗)>g(x∗)
= min

x∈Ω
f (x) + (µ∗)>g(x)

≤ min
x∈Ω,g(x)≤0

f (x) + (µ∗)>g(x)

≤ min
x∈Ω,g(x)≤0

f (x)
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Affine Sets

Consider a set C ⊂ Rn .

Definition. The set C is affine if, for all points x1, x2 ∈ C, and a scalar
λ ∈ R,

λx1 + (1− λ)x2 ∈ C

Example. The empty set is affine. Any line is affine. Any subspace is
affine.

Example. If C is the solution to a set of linear equations, e.g.

C = {x ∈ Rn : Ax = b},
for some matrix A ∈ Rm×n and vector b ∈ Rm , then C is an affine set.
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Affine Sets

Definition. Given a set of points X ⊂ Rn , the affine hull aff X is the
set of points

λ1x1 + · · ·+ λkxk ,

where k ≥ 1, {xi} ⊂ X , and

λ1 + · · ·+ λk = 1.

The affine hull aff X is affine, and is the smallest affine set containing
X .
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Convex Sets

Definition. The set C is convex if, for all points x1, x2 ∈ C, and scalars
0 ≤ λ ≤ 1,

λx1 + (1− λ)x2 ∈ C

Note: Clearly affine sets are also convex.

Definition. Given a set of points X ⊂ Rn , the convex hull conv X is
the set of points

λ1x1 + · · ·+ λkxk ,

where k ≥ 1, {xi} ⊂ X , λ ≥ 0, and

λ1 + · · ·+ λk = 1.

The convex hull conv X is convex, and is the smallest convex set
containing X .
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Hyperplanes and Halfspaces

Definition. A hyperplane is a set of the form

{x ∈ Rn : a>x = b},
where a ∈ Rn \ {0} is a non-zero vector called the normal vector and
b ∈ R is a scalar.

Hyperplanes are affine and thus convex.

Definition. A halfspace is a set of the form

{x ∈ Rn : a>x ≤ b},
where a ∈ Rn \ {0} is a non-zero vector and b ∈ R is a scalar.

Halfspaces are not affine but are convex.
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Norms

Definition. A norm is a real-valued function ‖ · ‖∗ on Rn such that

‖x‖∗ = 0 if and ony if x = 0
For all x ∈ Rn and λ ∈ R, ‖λx‖∗ = |λ|‖x‖∗
For all x1, x2 ∈ Rn , ‖x1 + x2‖∗ ≤ ‖x1‖∗ + ‖x2‖∗

Example.

‖x‖ = ‖x‖2 =
( n∑

i=1
x2

i

)1
2

=
√

x>x

‖x‖Γ =
√

x>Γx, Γ symmetric positive definite

‖x‖p =
( n∑

i=1
|xi |p

) 1
p
, p ≥ 1 ‖x‖∞ = max (|x1|, . . . , |xn |)

4 – 7

Norm Balls

Given a norm ‖ · ‖∗, the (closed) ball with center x0 ∈ Rn and radius
r ≥ 0,

{x ∈ Rn : ‖x − x0‖∗ ≤ r}
is convex.

Example. ‖ · ‖2 ⇒ spheres are convex

Example. ‖ · ‖Γ ⇒ ellipsoids are convex

Example. ‖ · ‖∞, ‖ · ‖1 ⇒ ‘boxes’ are convex
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Elementary Properties of Convex Sets

Theorem. (Scalar Multiplication) If C ⊂ Rn is a convex set, and α ∈ R
is a scalar, then the set

αC , {αx : x ∈ C}
is also convex.

Theorem. (Vector Sum) If C,D ⊂ Rn are convex sets, then the set

C +D , {x + y : x ∈ C, y ∈ D}
is also convex.

Theorem. (Affine Transformations) If C ⊂ Rn is a convex set,
A ∈ Rm×n a matrix, and b ∈ Rm a vector, then the set

{Ax + b : x ∈ C}
is a convex subset of Rm .
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Elementary Properties of Convex Sets

Theorem. (Intersection) If K is an arbitrary collection of convex sets,
then the intersection ⋂

C∈K
C

is also convex.
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Polyhedra

Definition. A set P is a polyhedron if it is of the form

P = {x ∈ Rn : Ax ≤ b},
for a matrix A ∈ Rm×n and a vector b ∈ Rm .

Note: Linear equality constraints are also trivially allowed.

Polyhedra are convex.

Example. The non-negative orthant {x ∈ Rn : x ≥ 0}.

Example. The unit simplex {x ∈ Rn : x ≥ 0, 1>x ≤ 1}.

Example. The probability simplex {x ∈ Rn : x ≥ 0, 1>x = 1}.
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Cones

Consider a set C ⊂ Rn .

Definition. The set C is a cone if, for all points x ∈ C, λ ≥ 0,

λx ∈ C

Definition. The set C is a convex cone if it is convex and a cone, i.e.,
for all x1, x2 ∈ C and λ1, λ2 ≥ 0,

λ1x1 + λ2x2 ∈ C
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Cones

Example. Given a collection of points X ⊂ Rn , the conic hull consists
of the points

λ1x1 + · · ·+ λkxk ,

where k ≥ 1, {xi} ⊂ X , and λ ≥ 0. This is a convex cone.

Example. Given a norm ‖ · ‖∗ on Rn , the norm cone

{(x, t) ∈ Rn+1 : ‖x‖∗ ≤ t}
is a convex cone in Rn+1. When ‖ · ‖∗ = ‖ · ‖2, this is known as a
second-order cone.

Example. The set of symmetric positive semidefinite matrices

Sn
+ , {X ∈ Rn×n : X> = X , X � 0}.

is a convex cone in Rn×n known as the positive semidefinite cone.
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Optimization Over Convex Sets: Necessary Condition

minimize f (x)
subject to x ∈ C ⊂ Rn

Theorem. Suppose that C is a convex set, x∗ is a local minimum, and
f (·) is continuously differentiable in a neighborhood of x∗. Then, for all
x ∈ C,

∇f (x∗)>(x − x∗) ≥ 0
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Necessary Condition: Proof

Suppose there exists x ∈ C with

∇f (x∗)>(x − x∗) < 0

By the mean value theorem, for a given ε > 0 sufficiently small,

f
(
x∗ + ε(x − x∗)

)
= f (x∗) + ε∇f

(
x∗ + sε(x − x∗)

)>(x − x∗),
for some s ∈ [0, 1]. Since ∇f is continuous, for ε sufficiently small,

∇f
(
x∗ + sε(x − x∗)

)>(x − x∗) < 0
Then,

f
(
x∗ + ε(x − x∗)

)
< f (x∗)

Since C is convex, this contradicts local optimality of x∗.
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Convex Functions

Definition. Let X ⊂ Rn be a convex set. A real-valued function
f : X → R is convex if, for all x1, x2 ∈ X and λ ∈ [0, 1],

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)
f (·) is strictly convex if, in addition,

f (λx1 + (1− λ)x2) < λf (x1) + (1− λ)f (x2)
when x1 6= x2 and λ ∈ (0, 1).

Note: If f : Rn → R is convex when restricted to a (convex) subset
X ⊂ R, we will say f (·) is convex over X .

Definition. A function f (·) is concave if −f (·) is convex, it is strictly
concave if −f (·) is strictly convex.
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Extended-Value Functions

Given a convex function f (·) with (convex) domain X ⊂ Rn , we can
define the extended-value extension f̃ : Rn → R ∪ {∞} by

f̃ (x) =
{

f (x) if x ∈ X
∞ otherwise

We define

dom f̃ , {x ∈ Rn : f (x) <∞}

Definition. An extended-value function g : Rn → R ∪ {∞} is convex if

the set dom g is convex

for all x1, x2 ∈ Rn and λ ∈ [0, 1],
g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2)

We will sometimes implicitly identify convex functions with their
extended-value extensions.
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Indicator Functions

Definition. Given a set C ⊂ Rn , the indicator function
IC : Rn → R ∪ {∞} is defined by

IC(x) =
{

0 if x ∈ C
∞ otherwise

If C is a convex set, then IC(·) is a convex function.
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First-Order Conditions for Convexity

Theorem. Let C ⊂ Rn be a convex set and f : Rn → R a differentiable
function. Then,

(i) f (·) is convex over C if and only if

f (x1) ≥ f (x0) +∇f (x0)>(x1 − x0), ∀ x0, x1 ∈ C
(ii) f (·) is strictly convex over C if and only if the inequality is strict

when x0 6= x1
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First-Order Conditions: Proof

Suppose that the inequality in (i) holds. Suppose x, y ∈ C, λ ∈ [0, 1],
and z = λx + (1− λ)y. Then,

f (x) ≥ f (z) +∇f (z)>(x − z), f (y) ≥ f (z) +∇f (z)>(y − z),
Thus,

λf (x) + (1− λ)f (y) ≥ f (z) +∇f (z)>(λx + (1− λ)y − z) = f (z)
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First-Order Conditions: Proof

Conversely, suppose f (·) is convex. Define, for x, z ∈ C, x 6= z,
λ ∈ (0, 1)

g(λ) , f (x + λ(z − x))− f (x)
λ

Note that, by convexity, g(·) is monotonically increasing.

Then,
∇f (x)>(z − x) = lim

λ↓0
g(λ) ≤ g(1) = f (z)− f (x)

(ii) is proved the same way.
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Second-Order Conditions

Theorem. Let C ⊂ Rn be a convex set and f : Rn → R a twice
continuously differentiable function. Then,

(i) if ∇2f (x) � 0 for all x ∈ C, f (·) is convex over C
(ii) if ∇2f (x) � 0 for all x ∈ C, f (·) is strictly convex over C

Note: Previous theorems can be applied if f : C → R, C is convex, and
differentiability assumptions hold on an open set containing C (e.g., if
C itself is open).

4 – 22



Second-Order Conditions: Proof

(i) By the second order Taylor expansion, if x, y ∈ C,
f (y) = f (x) +∇f (x)>(y − x) + 1

2(y − x)>∇2f (x + ε(y − x))(y − x),
for some ε ∈ [0, 1]. If ∇2f � 0,

f (y) ≥ f (x) +∇f (x)>(y − x)
Convexity follows from the first order conditions.

(ii) is proved the same way.

4 – 23

Examples

Exponential. eax is convex on R, for any a ∈ R.

Powers. xa is convex on (0,∞), for any a ≥ 1 or a ≤ 0, and
concave for 0 ≤ a ≤ 1.

Powers of absolute value. |x|p is convex on R, for any p ≥ 1.

Logarithm. log x is concave on (0,∞)

Negative entropy. x log x is convex on (0,∞), or convex on [0,∞)
if we set 0 log 0 = 0.
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Examples

Affine functions. Any affine function

f (x) , a>x + b
is concave and convex on Rn .

Norms. Any norm ‖ · ‖∗ on Rn is convex.

Log-sum-exp. The function

f (x) , log (ex1 + . . .+ exn )
is convex on Rn .

Geometric mean. The function

f (x) ,
( n∏

i=1
xi

) 1
n

is concave on (0,∞)n .
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Operations That Perserve Convexity

Nonnegative multiples. If f (·) is convex and w ≥ 0, then

g(x) , wf (x)
is convex.

Sums. If f1(·) and f2(·) are convex, then

g(x) , f1(x) + f2(x)
is convex.

Nonnegative weighted sums. If f1(·), . . . , fk(·) are convex and
wi ≥ 0, then

g(x) , w1f1(x) + · · ·+ wk fk(x)
is convex.

4 – 26



Operations That Perserve Convexity

Pointwise maxima. If fi(·) is convex, for i ∈ I, then

g(x) , sup
i∈I

fi(x)

is an extended-value convex function.

Minimization. If f (x, y) is convex over (x, y) ∈ Rn × Rm , and
C ⊂ Rm is convex, then

g(x) , inf
y∈C

f (x, y)

is convex provided g(x) > −∞.

Composition with affine functions. If f (·) is convex, then

g(x) , f (Ax + b)
is convex.
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Strategies to Verify Convexity

Construct from known convex functions using operations that
preserve convexity

Use first- or second-order differentiability properties of convex
functions

Restrict to a line, e.g. f (·) is convex over C if and only if, for every
x1, x2 ∈ C,

g(t) , f (x1 + t(x2 − x1))
is convex over [0, 1]

Directly verify using the definition of convexity
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Sublevel Sets

If f (·) is convex over a convex set C ⊂ Rn , every sublevel set

{x ∈ C : f (x) ≤ γ}
is a convex subset of Rn .

Note: The converse is not true! For example, log x is not convex on
(0,∞), however every sublevel set is convex.

Definition. An extended real-valued function f : Rn → R ∪ {∞} is
quasiconvex if, for all γ ∈ R, the sublevel set

{x ∈ Rn : f (x) ≤ γ}
is convex.
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Optimality for Convex Optimization

minimize f (x)
subject to x ∈ C ⊂ Rn

Theorem. Suppose that C ⊂ Rn is convex, f : Rn → R is convex over
C.

(i) any local minimum of f (·) is also a global minimum

(ii) if f (·) is strictly convex, then there exists at most one global
minimum
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Optimality: Proof

(i) Suppose x∗ is a local minimum, and there exists some x 6= x∗ with
f (x) < f (x∗). Then, if λ ∈ [0, 1),

f (λx∗ + (1− λ)x) ≤ λf (x∗) + (1− λ)f (x) < f (x∗)
This contradicts local optimality.

(ii) Suppose x0 6= x1 are two global minima. Then,

f
(

1
2(x0 + x1)

)
<

f (x0) + f (x1)
2

This contradicts the global optimality of x0 and x1.
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Necessary & Sufficient Optimality Condition

minimize f (x)
subject to x ∈ C ⊂ Rn

Theorem. Suppose that C ⊂ Rn is convex, f : Rn → R is convex over
C and differentiable, and x∗ ∈ C is a feasible point. Then, x∗ is a global
minimum if and only if

∇f (x∗)>(x − x∗) ≥ 0, ∀ x ∈ C

Proof. Necessity follows from earlier theorem, since C is convex. For
sufficiency, note that

f (x) ≥ f (x∗) +∇f (x∗)>(x − x∗) ≥ f (x∗), ∀ x ∈ C

4 – 32



Projection Theorem

Let C ⊂ Rn be a closed and non-empty convex set, and ‖ · ‖ = ‖ · ‖2
the Euclidean norm. Fix the vector x ∈ Rn .

minimize ‖z − x‖
subject to z ∈ C ⊂ Rn

Theorem. For every x ∈ Rn , the optimization problem has a unique
global minimum x∗ called the projection of x onto C. A vector x ′ ∈ C is
equal to x∗ if and only if

(x − x ′)>(z − x ′) ≤ 0, ∀ z ∈ C
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Projection Theorem: Proof

Existence follows from the fact that ‖z − x‖ is coercive, C is closed.

Uniqueness follows since we can equivalently minimize
f (z) , ‖z − x‖2, and

f (x) = (z − x)>(z − x) = z>z − 2z>x + x>x
is strictly convex.

Necessary and sufficent conditions follow from the fact that

∇f (x∗) = 2(x∗ − x)
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Example: Function Approximation

Suppose we are given a function f : Rn → R. We wish to approximate
f (·) over a set of points {x1, x2, . . . , xm} ⊂ Rn with a function

g(x) ,
k∑

`=1
rkφ`(x),

where {φ1(·), . . . , φk(·)} are a set of basis functions and r is a vector
of weights.

Consider the least squares optimization problem

minimize
m∑

i=1

(
f (xi)− g(xi)

)2

subject to g(·) is a linear combination of {φ`(·)}
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Example: Function Approximation

Define the matrix Φ ∈ Rm×k and the vector y ∈ Rm by

Φi,` , φ`(xi), yi , f (xi)

We have the equivalent projection problem

minimize ‖y − z‖
subject to z ∈ {Φr : r ∈ Rk}

This is a projection problem, hence an unique optimizer z∗ exists.
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Supporting Hyperplane Theorem

Definition. The hyperplane {x ∈ Rn : µ>x = b} with normal vector
µ ∈ Rn \ {0} and b ∈ R supports the convex set C ⊂ Rn at the point x̄
if

µ>x ≥ µ>x̄ = b, ∀ x ∈ C
Equivalently,

inf
x∈C

µ>x ≥ µ>x̄ = b

Theorem. Let C ⊂ Rn be a convex set and x̄ ∈ Rn be a point that is
not in the interior of C. Then, there exists a supporting hyperplane at
x̄, that is, a vector µ ∈ Rn , µ 6= 0, such that

µ>x ≥ µ>x̄, ∀ x ∈ C

5 – 3

Supporting Hyperplane Theorem: Proof

Define the C̄ = cl C , and note that C̄ is convex.

Let {xk} be a sequence of points such that xk /∈ C̄, xk 6= x, and xk → x̄.
This sequence exists since x̄ is not an interior point of C.

For each xk , let x̂k be the projection of xk onto C̄ (note that C̄ is
closed). Then,

(x̂k − xk)>(x − x̂k) ≥ 0,∀ x ∈ C̄
Then, for all k and x ∈ C̄,

(x̂k − xk)>x ≥ (x̂k − xk)>x̂k = (x̂k − xk)>(x̂k − xk) + (x̂k − xk)>xk
≥ (x̂k − xk)>xk
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Supporting Hyperplane Theorem: Proof

Set

µk , x̂k − xk
‖x̂k − xk‖

,

then

µ>k x ≥ µ>k xk , ∀ k, x ∈ C̄

Since ‖µk‖ = 1, the sequence {µk} has a non-zero subsequential limit
µ, and

µ>x ≥ µ>x̄, ∀ k, x ∈ C̄

5 – 5

Separating Hyperplane Theorem

Theorem. Let C1, C2 ⊂ Rn be two disjoint non-empty convex sets.
There exists a hyperplane that separates them, that is a vector
µ ∈ Rn , µ 6= 0, and a scalar b ∈ R with

µ>x1 ≤ b ≤ µ>x2, ∀ x1 ∈ C1, x2 ∈ C2
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Separating Hyperplane Theorem: Proof

Consider the convex set

D , C1 − C2 = {x1 − x2 : x1 ∈ C1, x2 ∈ C2}
Since the sets are disjoint, 0 /∈ D, thus there exists a vector µ 6= 0 with

0 ≤ µ>(x1 − x2), ∀ x1 ∈ C1, x2 ∈ C2

Set
b , sup

x2∈C2
µ>x2

Then,

µ>x2 ≤ b ≤ µ>x1, ∀ x1 ∈ C1, x2 ∈ C2

5 – 7

Strictly Separating Hyperplanes

Theorem. Let C ⊂ Rn be a closed convex set and x̄ /∈ C a point. Then,
there exists a hyperplane that strictly separates x̄ and C. In other
words, there exists a vector µ ∈ Rn \ {0} and a scalar b ∈ R such that

µ>x̄ < b < inf
x∈C

µ>x
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Strictly Separating Hyperplanes: Proof

Define
r , min

x∈C
‖x − x̄‖.

Since C is closed and x /∈ C, r > 0. Then, define

C̄ = {x ∈ Rn : ‖x − x̄‖ ≤ r/2}
Clearly C and C̄ are disjoint, so we can apply the separating
hyperplane theorem.

5 – 9

Halfspace Characterization

Corollary. If C ( Rn is a closed convex set, then C is the intersection
of all the closed halfspaces that contain it.

Proof. Let H be the collect of all of all closed halfspaces containing C.
Since C 6= Rn , by the strictly separating hyperplane theorem, H is
non-empty. Clearly

C ⊂ H̄ ,
⋂

H∈H
H

Suppose there exists x ∈ H̄ with x /∈ C. Then, there exists a
hyperplane that strictly separates x and C, and x does not lie in the
closed halfspace containing C. Thus, x /∈ H̄ . By contradiction,
C = H̄ .
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Farkas’ Lemma

Lemma. (Farkas) Consider a matrix A ∈ Rm×n . Given a vector
z ∈ Rm , the following conditions are equivalent:

(i) z>y ≤ 0 for all y ∈ Rm with A>y ≤ 0
(ii) z = Ax for some x ∈ Rn with x ≥ 0

5 – 11

Farkas’ Lemma: Proof

(ii)⇒ (i): z>y = xA>y ≤ 0, since A>y ≤ 0 and x ≥ 0

(i)⇒ (ii): Suppose z satisfies (i), and there is no x ≥ 0 with z = Ax.
Define C , {Ax ∈ Rm : x ≥ 0}. C is a closed convex set, and z /∈ C.
By the strictly separating hyperplane theorem, there exists y ∈ Rm ,
y 6= 0, with

y>z < y>z ′, ∀ z ′ ∈ C
Since 0 ∈ C,

y>z < 0
Now, if Ai is a column of A and λ > 0, λAi ∈ C. Thus,

y>z < λy>Ai
Dividing by λ and taking λ→∞,

0 ≤ y>Ai
Then, A>y ≥ 0. Contradiction.
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Application: Arbitrage

Scenario 1

Scenario 2

...

Scenario m

p1

p2

pm

0
today

1
next time period

random payoff realized

(R1,1,R1,2, . . . ,R1,n)

(R2,1,R2,2, . . . ,R2,n)

...

(Rm,1,Rm,2, . . . ,Rm,n)

m scenarios

n asset payoffs

payoff matrix

prices today = (v1, v2, . . . , vn)

5 – 13

Application: Arbitrage

A portfolio is described by a vector x ∈ Rn , specifying a quantity xi of
each ith asset.

price today = v>x, future payoffs = Rx

Definition. An arbitrage opportunity is a portfolio x such that

v>x < 0, Rx ≥ 0
A consistent market has no arbitrage opportunities.

How can we determine if a market is consistent?

A market is consistent if and only if there exists a vector q ≥ 0, with
v = R>q.
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Application: Risk-Neutral Pricing

Suppose we have q ≥ 0, v = R>q, 1>q 6= 0. Define

r , 1
1>q − 1, π , (1 + r)q

Then, π is a probability distribution (π ≥ 0, 1>π = 1).

Further,

vi = 1
1 + r

m∑

j=1
πjRji

Thus, the security prices are the expected discounted value under the
distribution π, which is known as a risk-neutral distribution.

5 – 15

The Primal Problem

Consider the primal optimization problem

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0

x ∈ Ω

Define f ∗ to be the value
f ∗ = inf

x∈Ω, g(x)≤0
f (x)

Assumption. Assume that the feasible set is non-empty and that the
optimal cost is bounded below. In other words,

−∞ < f ∗ <∞

Note: We are not making any other assumptions about f (·), g(·), or Ω
for the moment!
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Geometric Multipliers

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0

x ∈ Ω

Definition. For x ∈ Ω and µ ∈ Rr , define the Lagrangian function

L(x, µ) , f (x) + µ>g(x) = f (x) +
r∑

j=1
µjgj(x)

A vector µ∗ ∈ Rr is a geometric multiplier if

(i) µ∗ ≥ 0
(ii) f ∗ = inf

x∈Ω
L(x, µ∗)

5 – 17

Visualization

Definition. The set S ⊂ Rr+1 of constraint-cost pairs is defined by

S , {(g(x), f (x)) ∈ Rr+1 : x ∈ Ω}

Definition. Given a normal (µ, µ0) ∈ Rr+1 \ {0}, define the hyperplane
passing through (z̄, w̄) ∈ Rr+1 by

{(z,w) ∈ Rr+1 : µ>z + µ0w = µ>z̄ + µ0w̄}

Define the positive halfspace

{(z,w) ∈ Rr+1 : µ>z + µ0w ≥ µ>z̄ + µ0w̄}
and the negative halfspace

{(z,w) ∈ Rr+1 : µ>z + µ0w ≤ µ>z̄ + µ0w̄}

The hyperplane is non-vertical if µ0 6= 0.

Note: Any non-vertical hyperplane with normal (µ, µ0) can be
normalized so that µ0 = 1.
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Visualization Lemma

Lemma.

(i) The hyperplane with normal (µ, 1) that passes through the vector
(g(x), f (x)) intercepts the vertical axis

{(0,w) ∈ Rr+1 : x ∈ R}
at the level L(x, µ)

(ii) Among all hyperplanes with normal (µ, 1) that contain S in the
positive halfspace, the highest interception of the vertical axis is
attained at

inf
x∈Ω

L(x, µ)

(iii) µ∗ is a geometric multiplier if and only if µ∗ ≥ 0 and, among all
hyperplanes with normal (µ∗, 1) that contain S in the positive
halfspace, the highest interception of the vertical axis is attained
at f ∗

5 – 19

Visualization Lemma: Proof

(i): The hyperplane is the set of (z,w) satisfying

µ>z + w = µ>g(x) + f (x)
If z = 0, then we must have w = L(x, µ).

(ii): The hyperplane with normal (µ, 1) that intercepts the axis at level c
is the set of (z,w) with

µ>z + w = c
If S lies in the positive halfspace, then

L(x, µ) = f (x) + µ>g(x) ≥ c
Thus, the maximum intercept is c∗ = inf

x∈Ω
L(x, µ).

(iii): Follows from (ii) and the definition of a geometric multiplier.
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Geometric Multipliers and Optimality

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0

x ∈ Ω

Theorem. Let µ∗ be a geometric multiplier. Then, x∗ is a global
minimum if and only if x∗ is feasible and

x∗ ∈ argmin
x∈Ω

L(x, µ∗), µ∗j gj(x∗) = 0, ∀ 1 ≤ j ≤ r

5 – 21

Geometric Multipliers and Optimality: Proof

Assume x∗ is a global minimum. Then,

f ∗ = f (x∗) ≥ f (x∗) + (µ∗)>g(x∗) = L(x∗, µ∗) ≥ inf
x∈Ω

L(x, µ∗) = f ∗

Then, (µ∗)>g(x∗) = 0.

Conversely,

f (x∗) = f (x∗) + (µ∗)>g(x∗) = L(x∗, µ∗) = min
x∈Ω

L(x, µ∗) = f ∗
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The Dual Function

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0

x ∈ Ω
Definition. The dual function q : Rr → R ∪ {−∞} is defined by

q(µ) , inf
x∈Ω

L(x, µ)

Note: q(µ) <∞ since Ω is non-empty, by assumption. However, q(µ)
may be −∞ for some µ. We define the domain

dom q = {µ ∈ Rr : q(µ) > −∞}
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The Dual Problem

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0

x ∈ Ω

Definition. The dual problem is defined by
maximize q(µ)
subject to µ ≥ 0

The dual optimal value is given by
q∗ , sup

µ≥0
q(µ)

The dual problem corresponds to finding the maximum point of
interception of the vertical axis, over all hyperplanes with normal
(µ, 1), where µ ≥ 0.

Note: It is possible that q(µ) = −∞ for all µ ≥ 0. In this case, we say
that the dual problem is infeasible, and set q∗ = −∞.
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The Dual Function

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0

x ∈ Ω

q(µ) , inf
x∈Ω

L(x, µ)

Theorem. The domain dom q is convex, and q(·) is concave over its
domain.
Proof. Follows since q(·) is a pointwise minimum of concave (in fact,
linear) functions.
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Weak Duality Theorem

Theorem. (Weak Duality) q∗ ≤ f ∗

Proof. If µ ≥ 0, x ∈ Ω, and g(x) ≤ 0,

q(µ) = inf
z∈Ω

L(z, µ) ≤ f (x) + µ>g(x) ≤ f (x)

Thus,
q∗ = sup

µ≥0
q(µ) ≤ inf

x∈Ω,g(x)≤0
f (x) = f ∗
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Duality Gap

Definition. If q∗ = f ∗ we say there is no duality gap. If q∗ < f ∗, there is
a duality gap.

Theorem. If there is no duality gap, the set of geometric multipliers is
equal to the set of dual optimal solutions.

If there is a duality gap, the set of geometric multipliers is empty.

Proof. By definition, µ∗ ≥ 0 is a geometric multiplier iff
f ∗ = q(µ∗) ≤ q∗. By the weak duality theorem, this holds iff there is no
duality gap.
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Examples

minimize f (x) = x1 − x2
subject to g(x) = x1 + x2 − 1 ≤ 0

x ∈ Ω = {(x1, x2) : x1, x2 ≥ 0}

f ∗ = −1, x∗ = (0, 1)

q(µ) = min
x≥0

x1 − x2 + µ(x1 + x2 − 1) =
{
−µ if µ ≥ 1
−∞ if µ < 1

q∗ = −1, µ∗ = 1
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Examples

minimize f (x) = |x1|+ x2
subject to g(x) = x1 ≤ 0

x ∈ Ω = {(x1, x2) : x2 ≥ 0}

f ∗ = 0, x∗ = (0, 0)

q(µ) = min
(x1,x2) : x2≥0

|x1|+ x2 + µx1 =
{

0 if |µ| ≤ 1
−∞ if |µ| > 1

q∗ = 0, µ∗ ∈ [0, 1]

5 – 29

Examples

minimize f (x) = x
subject to g(x) = x2 ≤ 0

x ∈ Ω = R

f ∗ = 0, x∗ = 0

q(µ) = min
x∈R

x + µx2 =
{
− 1

4µ if µ > 0
−∞ if µ ≤ 0

q∗ = 0, no duality gap, but no optimal dual solution
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Examples

minimize f (x) = −x
subject to g(x) = x − 1/2 ≤ 0

x ∈ Ω = {0, 1}

f ∗ = 0, x∗ = 0

q(µ) = min
x∈{0,1}

−x + µ(x − 1/2) = min (−µ/2, µ/2− 1)

q∗ = −1/2, µ∗ = −1
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Primal and Dual Optimality Conditions

Theorem. (x∗, µ∗) is an optimal solution/geometric multiplier pair if
and only if

(i) x∗ ∈ Ω, g(x∗) ≤ 0 (primal feasibility)

(ii) µ∗ ≥ 0 (dual feasibility)

(iii) x∗ ∈ argmin
x∈Ω

L(x, µ∗) (Lagrangian optimality)

(iv) µ∗j g∗j (x∗) = 0, ∀ 1 ≤ j ≤ r (complementary slackness)

Note: This is only useful if there is no duality gap!
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Primal and Dual Optimality Conditions: Proof

If (x∗, µ∗) is an optimal solution/geometric multiplier pair, then clearly
(i) and (ii) hold. (iii) and (iv) follow from the earlier theorem.

Conversely, if (i)–(iv) hold,
f ∗ ≤ f (x∗) = L(x∗, µ∗) = min

x∈Ω
L(x, µ∗) = q(µ∗) ≤ q∗

By weak duality, equality must hold and hence x∗ is primal optimal
and µ∗ is dual optimal.
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Saddle Point Theorem

Theorem. (x∗, µ∗) is an optimal solution/geometric multiplier pair if
and only if x∗ ∈ Ω, µ∗ ≥ 0, and (x∗, µ∗) is a saddle point of the
Lagrangian, in the sense that

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), ∀ x ∈ Ω, µ ≥ 0

Note: This is only useful if there is no duality gap!
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Saddle Point Theorem: Proof

If (x∗, µ∗) is an optimal solution/geometric multiplier pair, from
optimality condition (iii),

L(x∗, µ∗) ≤ L(x, µ∗), ∀ x ∈ Ω
Further, if µ ≥ 0, using optimality conditions (iii) and (iv),

L(x∗, µ) ≤ f (x∗) = L(x∗, µ∗)

Conversely, assume the x∗ ∈ Ω, µ∗ ≥ 0, and (x∗, µ∗) is a saddle point.
Then,

sup
µ≥0

L(x∗, µ) = sup
µ≥0

f (x∗) + µ>g(x∗) =
{

f (x∗) if g(x∗) ≤ 0
+∞ otherwise

Thus, g(x∗) ≤ 0, L(x∗, µ∗) = f (x∗), and µ∗j gj(x∗) = 0, ∀ j. Thus,
optimality conditions (i)–(iv) hold.
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Infeasibility and Unboundedness

Suppose the primal problem is unbounded, that is, f ∗ = −∞. Then,
the proof of the weak duality theorem applies, and

q(µ) = −∞, ∀ µ ≥ 0
Thus, the dual problem is infeasible.

Alternatively, assume that the primal problem is infeasible. In general,
nothing can be said about the dual problem.
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Equality Constraints

The theory developed thus far can be extended to equality constaints
by introducing a pair of inequality constraints for each equality
constraint. Equivalently, we can eliminate non-negativity constraints
on the multipliers for equality constraints.

f : Ω→ R
h : Ω→ Rm

g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω

Definition. For x ∈ Ω, λ ∈ Rm , µ ∈ Rr , define the Lagrangian function

L(x, λ, µ) , f (x) + λ>h(x) + µ>g(x) = f (x) +
m∑

i=1
λihi(x) +

r∑

j=1
µjgj(x)
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Equality Constraints

f : Ω→ R
h : Ω→ Rm

g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω

Definition. (λ∗, µ∗) ∈ Rm × Rr is a geometric multiplier if

(i) µ∗ ≥ 0
(ii) f ∗ = inf

x∈Ω
L(x, λ∗, µ∗)
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Equality Constraints

f : Ω→ R
h : Ω→ Rm

g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω

Definition. The dual function q : Rm × Rr → R ∪ {−∞} is defined by

q(λ, µ) , inf
x∈Ω

L(x, λ, µ)

The dual problem is defined by
maximize q(λ, µ)
subject to µ ≥ 0

λ ∈ Rm
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Issues

This theory is most useful when there is no duality gap, or, when
geometric multipliers exist.

This will require:

Convexity of the objective and constraints

Technical conditions, similar to constraint qualification
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Duality and Decentralization

Suppose that the decision variables x decompose according to

x = (x1, x2, . . . , xk) ∈ Rn1 × Rn2 × · · · × Rnk

where n = n1 + · · ·+ nk .

Consider the separable optimization problem

minimize
k∑

i=1
fi(xi)

subject to
k∑

i=1
gij(xi) ≤ 0, ∀ 1 ≤ j ≤ r

xi ∈ Ωi , ∀ 1 ≤ i ≤ k
Here,

fi : Ωi → R, gij : Ωi → R, Ωi ⊂ Rni
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Separablility and Duality

The Lagrangian is

L(x, µ) =
k∑

i=1
fi(xi) +

r∑

j=1
µj

k∑

i=1
gij(xi)

The dual function is

q(µ) = inf
x∈Ω1×···×Ωk

k∑

i=1

(
fi(xi) +

r∑

j=1
µjgij(xi)

)

Note that if

qi(µ) , inf
xi∈Ωi

fi(xi) +
r∑

j=1
µjgij(xi)

then the dual problem becomes

maximize
k∑

i=1
qi(µ)

subject to µ ≥ 0
µ ∈ Rr
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Example: Resource Allocation

Activities 1, . . . , k (e.g., divisions of a firm)

Resources 1, . . . , r (e.g., capital, labor, etc.)

Each activity consumes resources, and generates a benefit
(utility, profit, etc.)

Decision variables:
xij = quantity of resource j allocated to activity i
xij ≥ 0

The ith activity generates utility according to

Ui(xi) , Ui(xi1, . . . , xir)
The supply of the resources is limited, so we require that

k∑

i=1
xij ≤ Cj , ∀ 1 ≤ j ≤ r [Cj > 0]
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Example: Resource Allocation

Objective: maximize total utility

maximize
k∑

i=1
Ui(xi)

subject to
k∑

i=1
xij ≤ Cj , ∀ 1 ≤ j ≤ r

x ≥ 0,
x ∈ Rk×r
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Example: Resource Allocation

Lagrangian:

L(x, µ) =
k∑

i=1
Ui(xi)−

r∑

j=1
µj

( k∑

i=1
xij − Cj

)

Dual function:

q(µ) = sup
x≥0

L(x, µ) =
k∑

i=1
qi(µ) +

r∑

j=1
µjCj

where

qi(µ) = sup
xi≥0

Ui(xi)−
r∑

j=1
µjxij
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Example: Resource Allocation

If µ∗ is a geometric multiplier, then a feasible allocation x∗ is a global
minimum if and only if

x∗ ∈ argmax
x≥0

L(x, µ∗) = argmax
x≥0

k∑

i=1


Ui(xi)−

r∑

j=1
µ∗j xij




⇔ x∗i ∈ argmax
xi≥0

Ui(xi)−
r∑

j=1
µ∗j xij

The dual variables µ∗ can be interpreted as prices that serve as a
coordination mechanism. Given the proper selection of prices, the
optimal solution can be constructed by solving independent
subproblems for each activity.

Prices are proxies for decentralization.
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Example: Resource Allocation

Conditions for optimal solution-geometric multiplier pair (x∗, µ∗):
(i) Primal feasibility

x∗ ≥ 0,
k∑

i=1
x∗ij ≤ Cj , ∀ 1 ≤ j ≤ r

(ii) Dual feasibility µ∗ ≥ 0
(iii) Lagrangian optimality

x∗i ∈ argmax
xi≥0

Ui(xi)−
r∑

j=1
µ∗j xij ,∀ 1 ≤ i ≤ k

(iv) Complementary slackness

µ∗j

( k∑

i=1
x∗ij − Cj

)
= 0, ∀ 1 ≤ j ≤ r

6 – 9

Tâtonnement Procedure

1. Pick a set of initial prices µ ≥ 0.
2. Compute the allocation x by

xi ∈ argmax
x′i≥0

Ui(x ′i)−
r∑

j=1
µjx ′ij

3. For each resource j,

if
k∑

i=1
xij > Cj ⇒ raise µj slightly

if
k∑

i=1
xij < Cj ⇒ lower the µj slightly, keeping µj ≥ 0

4. Repeat.

Under proper technical conditions (concavity of utility functions,
existence of geometric multipliers, good choice of step-sizes, etc.),
this decentralized procedure with find the global minimum.
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Duality and Combinatorial Optimization

The knapsack problem consists of determining which of n items to
place in a knapsack of limited capacity.

Decision variables: (x1, . . . , xn) where xi = 1 if the item i is placed
in the knapsack, xi = 0 otherwise

Knapsack constraint: the total capacity of the knapsack is C > 0,
item i has weight 0 < wi ≤ C , so

n∑

i=1
wixi ≤ C

Objective: the value of item i is vi > 0, we would like to maximize
the total value of items in the knapsack

n∑

i=1
vixi

6 – 11

Example: The Knapsack Problem

f ∗ = maximize f (x) =
n∑

i=1
vixi

subject to
n∑

i=1
wixi ≤ C

xi ∈ {0, 1}, ∀ 1 ≤ i ≤ n

Integer problem, “hard”

Dual function:

q(µ) = sup
x∈{0,1}n

L(x, µ) = sup
x∈{0,1}n

n∑

i=1
vixi − µ

( n∑

i=1
wixi − C

)

= sup
x∈{0,1}n

n∑

i=1
(vi − µwi)xi + µC

=
n∑

i=1
max (vi − µwi , 0) + µC
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Example: The Knapsack Problem

Weak duality:

f ∗ ≤ q∗ = inf
µ≥0

q(µ) = inf
µ≥0

n∑

i=1
wi max (vi/wi − µ, 0) + µC

Without loss of generality, assume
v1
w1
≥ v2

w2
≥ · · · ≥ vn

wn
Define

I ∗(µ) , max {i : vi/wi ≥ µ}
Then,

q(µ) =
I∗(µ)∑

i=1
(vi − wiµ) + µC =

I∗(µ)∑

i=1
vi + µ


C −

I∗(µ)∑

i=1
wi




⇒ piecewise linear

6 – 13

Example: The Knapsack Problem

Define

I ∗ , min

{
I :

I∑

i=1
wi > C

}
⇒ µ∗ = vI∗/wI∗

Then,

f ∗ ≤ q∗ = inf
µ≥0

q(µ) =
I∗∑

i=1
vi + vI∗

wI∗

(
C −

I∗∑

i=1
wi

)

=
I∗−1∑

i=1
vi + vI∗

wI∗

(
C −

I∗−1∑

i=1
wi

)

We have an upper bound on the optimal value. How about a “good”
solution? A bound on the duality gap?
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Example: The Knapsack Problem

Consider the optimization

max
x∈{0,1}n

L(x, µ∗) = max
x∈{0,1}n

n∑

i=1

(
vi −

vI∗

wI∗
wi

)
xi + vI∗

wI∗
C

⇒ x̃i =
{

1 if i < I ∗

0 if i ≥ I ∗

Note that the trial solution x̃ is clearly feasible. It is constructed with a
greedy algorithm: sort the items by “bang per buck” vi/wi , greedily
add items to knapsack until it is full.

f (x̃) =
I∗−1∑

i=1
vi q∗ − f (x̃) = vI∗

wI∗

(
C −

I∗−1∑

i=1
wi

)
≤ vI∗

6 – 15

Example: The Knapsack Problem

Putting it all together,

f (x̃) ≤ f ∗ ≤ f (x̃) + vI∗

Can we do better?

Set x̂ to be the the better of

1. the trial solution x̃
2. a solution consisting of only item I ∗

f (x̂) ≤ f ∗ ≤ f (x̃) + vI∗ ≤ 2f (x̂)

The revised algorithm is a 2-approximation to the knapsack problem.
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Strong Duality

We would like to understand two related questions:

When is there no duality gap?

When do optimal solutions exist for the dual problem?

6 – 17

Strong Duality: Linear Constraints

Primal problem:

f : Rn → R
A ∈ Rm×n , b ∈ Rm

minimize f (x)
subject to Ax ≤ b,

x ∈ Rn

Dual problem:

L(x, µ) = f (x) + µ>(Ax − b)
q(µ) = inf

x∈Rn
L(x, µ)

maximize q(µ)
subject to µ ≥ 0,

µ ∈ Rm

Theorem. Suppose that f (·) is convex over Rn and continuously
differentiable. If the primal problem has an optimal solution, then there
is no duality gap, and at least one geometric multiplier exists.
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Linear Constraints: Proof

Let x∗ be an optimal solution for the primal. Then, there exists
µ∗ ∈ Rm such that

µ∗ ≥ 0, (µ∗)>(Ax∗ − b) = 0, ∇f (x∗) + Aµ∗ = 0
Since L(x, µ) is convex in x, we have

x∗ ∈ argmin
x∈Rn

L(x, µ∗)

Thus,
f (x∗) = min

x∈Rn
f (x) + (µ∗)>(Ax − b) = q(µ∗)

Then,

q(µ∗) ≤ q∗ ≤ f ∗ ≤ f (x∗) ⇒ q∗ = f ∗
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Linear Constraints: Remarks

Trivally applies to linear equality constraints also. More generally,

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0,

g(x) ≤ 0,
x ∈ Rn

L(x, λ, µ) = f (x) + λ>h(x) + µ>g(x)

If:

(a) There exists an optimal solution x∗

(b) f (·), h(·), g(·) are continuously differentiable

(c) There exist multipliers (λ∗, µ∗) satisfying the KKT conditions
(regularity)

(d) f (·), h(·), g(·) are convex over Rn

Then, there is no duality gap, and geometric multipliers exist.
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Strong Duality: Remarks

We would like a more general theory, which

Does not require differentiablility

Allows for set constraints

6 – 21

Slater’s Condition

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0

x ∈ Ω

Theorem. (Slater’s Condition) Suppose that:

(i) The problem is bounded, i.e.
−∞ < f ∗ = inf

x∈Ω, g(x)≤0
f (x)

(ii) The set Ω is convex, and f (·), g(·) are convex over Ω
(iii) There exists a vector x̄ ∈ Ω with g(x̄) < 0

Then, there is no duality gap and there exists at least one geometric
multiplier.
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Slater’s Condition: Proof

Define

A = {(z,w) ⊂ Rr+1 : ∃ x ∈ Ω with g(x) ≤ z, f (x) ≤ w}
Observe that A is convex, by the convexity of Ω, f (·), and g(·).

Next, observe that (0, f ∗) is not in the interior of A. Otherwise, for
some ε > 0, (0, f ∗ − ε) ∈ A, contradicting the definition of f ∗.

By the supporting hyperplane theorem, there exists a normal vector
(µ, β) 6= (0, 0) such that

βf ∗ ≤ βw + µ>z, ∀ (z,w) ∈ A
If (z,w) ∈ A, then (z,w + γ) ∈ A for all γ ≥ 0. Then, we must have
β ≥ 0. Similarly, µ ≥ 0.
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Slater’s Condition: Proof

We would like to show that β > 0. Suppose not. Then,

0 ≤ µ>z, ∀ (z,w) ∈ A
Since (g(x̄), f (x̄)) ∈ A,

0 ≤ µ>g(x̄)
Then, we must have µ = 0 and (µ, β) = (0, 0) which is a contradiction.

Since β > 0, we can divide by β and assume that β = 1. Thus,

f ∗ ≤ w + µ>z, ∀ (z,w) ∈ A
⇒ f ∗ ≤ f (x) + µ>g(x), ∀ x ∈ Ω

Minimizing over x ∈ Ω,

f ∗ ≤ inf
x∈Ω

f (x) + µ>g(x) = q(µ) ≤ q∗

Then, by weak duality, f ∗ = q∗ and µ is a geometric multiplier.
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Slater’s Condition: Remarks

Existence of the interior point in condition (iii) is important!

Does not apply to equality constraints! These are harder to deal with.

Definition. Suppose C ⊂ Rn is a convex set. The relative interior of C
is the set relint C of all x ∈ Rn for which there exists an ε > 0 such
that if z ∈ aff C with ‖z − x‖ < ε, then z ∈ C.
In other words, relint C is the interior of C relative to the affine hull
aff C.
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Mixed Constraints

f : Ω→ R
g : Ω→ Rr

A ∈ Rm×n , b ∈ Rm

E ∈ Rm×k , d ∈ Rk

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0

Ax ≤ b
Ex = d
x ∈ Ω

Theorem. Suppose that the optimal value f ∗ is finite, and:

(i) Ω is the intersection of a convex set C and a polyhedron

(ii) The functions f (·), g(·) are convex over Ω
(iii) There is a feasible vector x̄ with g(x̄) < 0
(iv) There is a vector x with Ax ≤ b, Ex = d, x ∈ relint C, and x ∈ Ω
Then, there is no duality gap and there exists at least one geometric
multiplier.
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Duality for Linear Programs

c ∈ Rn

A ∈ Rr×n

b ∈ Rr

minimize c>x
subject to Ax ≥ b

x ∈ Ω = Rn

The Lagrangian is

L(x, µ) = c>x + µ>(b −Ax)

The dual objective function is

q(µ) = inf
x

c>x + µ>(b −Ax) =
{

b>µ if c = A>µ
−∞ otherwise

The dual problem is

maximize q(µ)
subject to µ ≥ 0

µ ∈ Rr
⇒

maximize b>µ
subject to A>µ = c

µ ≥ 0
µ ∈ Rr

7 – 3

Duality for Linear Programs

More generally, let A be a matrix with rows a>i ∈ Rn and columns
Aj ∈ Rr . Then:

Primal

minimize c>x
subject to a>i x ≥ bi , ∀ i ∈ M1

a>i x ≤ bi , ∀ i ∈ M2
a>i x = bi , ∀ i ∈ M3
xj ≥ 0, ∀ j ∈ N1
xj ≤ 0, ∀ j ∈ N2
xj free, ∀ j ∈ N3

Dual

maximize b>y
subject to yj ≥ 0, ∀ j ∈ M1

yj ≤ 0, ∀ j ∈ M2
yj free, ∀ j ∈ M3
A>j y ≤ cj , ∀ j ∈ N1
A>j y ≥ cj , ∀ j ∈ N2
A>j y = cj , ∀ j ∈ N3

Note: The dual is being taken with respect to the set constraint

Ω , {x ∈ Rn : xj ≥ 0, ∀ j ∈ N1, xj ≤ 0, ∀ j ∈ N2}
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Duality for Linear Programs

Primal minimize maximize Dual
≥ bi ≥ 0

constraints ≤ bi ≤ 0 variables
= bi free
≥ 0 ≤ cj

variables ≤ 0 ≥ cj constraints
free = cj

7 – 5

Duality for Quadratic Programs

Q ∈ Rn×n , Q � 0
c ∈ Rn

A ∈ Rr×n

b ∈ Rr

minimize 1
2x>Qx + c>x

subject to Ax ≤ b
x ∈ Ω = Rn

The Lagrangian is

L(x, µ) = 1
2x>Qx + c>x + µ>(Ax − b)

The dual objective function is
q(µ) = inf

x
1
2x>Qx + c>x + µ>(Ax − b)

This is minimized when

x = −Q−1(c + A>µ)
Thus,

q(µ) = −1
2µ
>AQ−1A>µ− µ>(b + AQ−1c)− 1

2c>Q−1c
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Duality for Quadratic Programs

Q ∈ Rn×n , Q � 0
c ∈ Rn

A ∈ Rr×n

b ∈ Rr

minimize 1
2x>Qx + c>x

subject to Ax ≤ b
x ∈ Ω = Rn

The dual problem is
maximize q(µ)
subject to µ ≥ 0

µ ∈ Rr
⇒

maximize −1
2µ
>Pµ− t>µ− d

subject to µ ≥ 0
µ ∈ Rr

Here,

P , AQ−1A>, t , b + AQ−1c, d , 1
2c>Q−1c

Note: The dual has simpler contraints and possibly smaller
dimension. However, dual may be dense if primal is sparse.
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Conjugate Functions

Definition. A proper convex function is an extended-real valued
convex function f : Rn → R ∪ {∞}, with dom f 6= ∅.

Definition. A closed function is an extended-real valued function
f : Rn → R ∪ {∞}, such that for every α ∈ R, the sublevel set

{x ∈ Rn : f (x) ≤ α}
is closed.

Definition. The convex conjugate (Fenchel-Legendre transformation)
of a proper convex function f (·) is the extended-real valued function
f ∗ : Rn → R ∪ {∞} defined by

f ∗(y) , sup
x∈dom f

x>y − f (x)
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Conjugate Functions: Examples

Example.

f (x) = a>x + b ⇒ f ∗(y) =
{
−b if y = a
∞ otherwise

Example.

f (x) = 1
2x>Qx, Q � 0 ⇒ f ∗(y) = 1

2y>Q−1y

Example.

f (x) = log

( n∑

i=1
exi

)
⇒ f ∗(y) =





n∑

i=1
yi log yi if y ≥ 0, 1>y = 1

∞ otherwise

7 – 9

Elementary Properties of Conjugate Functions

Theorem. f ∗(·) is convex.
Proof. Follows since it is a pointwise supremum of convex (linear)
functions in y. This is true even if f (·) is not convex.

Theorem. (Fenchel’s Inequality) For all x, y ∈ Rn ,

x>y ≤ f (x) + f ∗(y)
Proof. Follows from the definition, since

f ∗(y) ≥ x>y − f (x)

Theorem. If f (u, v) = f1(u) + f2(v), then
f ∗(w, z) = f ∗1 (w) + f ∗2 (z)

Theorem. Suppose that A ∈ Rn×n is invertible and b ∈ Rn , and
g(x) , f (Ax + v). Then,

g∗(y) = f ∗(A−>y)− b>A−>y
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Conjugate of the Conjugate

Theorem. If f (·) is a proper, closed convex function, then f ∗∗ = f .

7 – 11

Differentiablility

Theorem. Suppose f (·) is a convex and differentiable function with
dom f = Rn . Then, if x ∈ Rn and y = ∇f (x), then

f ∗(y) = x>∇f (x)− f (x)
Proof. If y = ∇f (x), then z = x maximizes the function z>y − f (z)
(note that this function is concave and differentiable, so first order
conditions are sufficient).

Note: This allows us to determine f ∗(y) for any y where we can solve
y = ∇f (x) for x.
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Example: Chernoff Bounds

Suppose that X is a real-valued random variable. If X ≥ 0, and t > 0
is a constant,

1{X≥t} ≤
1
t X ⇒ E

[
1{X≥t}

]
≤ 1

t E[X ] ⇒ P(X ≥ t) ≤ 1
t E[X ]

The last inequality is known as Markov’s inequality.

Now, if X is any real-valued random variable and λ > 0 is a constant,

1{X≥t} ≤ eλ(X−t) ⇒ E
[
1{X≥t}

]
≤ E

[
eλ(X−t)

]

⇒ P(X ≥ t) ≤ e−λtE
[
eλX

]

This is known as a Chernoff bound. The inequality trivially holds for
λ = 0, so we have

P(X ≥ t) ≤ e−λtE
[
eλX

]
, ∀ λ ≥ 0

7 – 13

Example: Chernoff Bounds

Define the cumulant generating function

f (λ) , log E
[
eλX

]
, f+(λ) ,

{
f (λ) if λ ≥ 0,

∞ otherwise.

Note that these are always convex functions!

Optimizing over the choice of λ ≥ 0 in the Chernoff bound,

P(X ≥ t) ≤ inf
λ≥0

e−λtE
[
eλX

]
= exp

(
− sup

λ≥0
λt − f (λ)

)

⇒ P(X ≥ t) ≤ e−f ∗+(t)

The tightest possible bound is closely related to the conjugate of
f+(·)!
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Example: Large Deviations

Consider a collection of random vectors {X1,X2, . . .}, where each
Xi ∈ {0, 1} is independently and identically distributed coin flip, and
E[Xi ] = 1/2.

Consider the cumulative ‘number of heads’

Yk =
k∑

i=1
Xi

By the law of large numbers, we expect that Yk/k ≈ 1/2. But how
fast? To be precise, if α > 1/2, how fast does

P(Yk/k ≥ α)
go to zero? The study of this question is known as large deviations.

7 – 15

Example: Large Deviations

Note that, if λ ≥ 0,

P(Yk ≥ αk) ≤ e−αλkE
[
eλYk

]
= e−αλk

(
E
[
eλX1

])k

Define

f (λ) , log E
[
eλX1

]
= log

(
1 + eλ

)
− log 2

Then,

P(Yk ≥ αk) ≤ exp {−k (λα− f (λ))}

When 1/2 < α < 1,

P(Yk ≥ αk) ≤ exp

(
−k sup

λ≥0
λα− f (λ)

)
= exp

(−kf ∗+(α)
)

and the probability goes to zero exponentially fast at the rate

f ∗+(α) = α logα+ (1− α) log(1− α) + log 2
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Example: Multivariate Chernoff Bounds

More generally, given a random variable X taking values in Rn and a
set C ⊂ Rn , how can we estimate or bound P(X ∈ C)?

Suppose we have a function f : Rn → R, so that
1{z∈C} ≤ f (z), ∀ z ∈ Rn ⇒ P(X ∈ C) ≤ E [f (X)]

Consider functions of the form

f (z) = eλ>z+µ

with parameters λ ∈ Rn , µ ∈ R.

1{z∈C} ≤ f (z), ∀ z ∈ Rn ⇔ λ>z + µ ≥ 0, ∀ z ∈ C

7 – 17

Example: Multivariate Chernoff Bounds

P(X ∈ C) ≤ E
[
eλ>X+µ

]
if λ>z + µ ≥ 0, ∀ z ∈ C

Define the cumulant generating function

f (λ) , log E
[
eλ>X

]

Then,

log P(X ∈ C) ≤ inf
λ,µ

{
µ+ f (λ) | − λ>z ≤ µ, ∀ z ∈ C

}

= inf
λ

{
sup
z∈C

(−λ>z) + f (λ)
}

= inf
λ
{SC(−λ) + f (λ)}

Here, SC(·) is the support function

SC(λ) = sup
z∈C

λ>z = I ∗C (λ), IC(z) =
{

0 if z ∈ C,
∞ otherwise.
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Example: Multivariate Chernoff Bounds

Suppose that we translate the set C by a vector v ∈ Rn .

P(X ∈ C + v) ≤ exp
(

inf
λ

SC+v(−λ) + f (λ)
)

= exp
(

inf
λ
−λ>v + SC(−λ) + f (λ)

)

= exp
(
− sup

λ
λ>v − SC(−λ)− f (λ)

)

= e−f ∗C (v)

with

fC (λ) = SC(−λ) + f (λ)
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Conjugacy & Duality

Consider a proper convex function f : Rn → R ∪ {∞}. Consider the
optimization problem

minimize f (x)
subject to x ≤ 0

[x ∈ dom f ]

The Lagrangian is

L(x, λ) = f (x) + λ>x

The dual objective function is

q(λ) = inf
x

f (x) + λ>x = − sup
x

(−λ)>x − f (x) = −f ∗(−λ)
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Conjugacy & Duality

f : Rn → R ∪ {∞}
proper, convex
A ∈ Rm×n , b ∈ Rm

C ∈ Rr×n , d ∈ Rr

minimize f (x)
subject to Ax = b

Cx ≤ d
[x ∈ dom f ]

The Lagrangian is

L(x, λ, µ) = f (x) + λ>(Ax − b) + µ>(Cx − d)

The dual objective function is

q(λ, µ) = inf
x

f (x) + λ>(Ax − b) + µ>(Cx − d)

= −b>λ− d>µ+ inf
x

f (x) + λ>Ax + µ>Cx

= −b>λ− d>µ− f ∗(−A>λ− C>µ)
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How to Take a Dual

In general, in order of difficulty:

Lookup a standard form, e.g., linear program

Use conjugacy

Directly from the definition

In general, the dual is sensitive to problem formulation. For example,
the problems

minimize ‖x‖
subject to Ax = b

x ∈ Rn

minimize 1
2‖x‖2

subject to Ax = b
x ∈ Rn

are mathematically equivalent, but have very different duals!
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The Primal Problem

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ u

x ∈ Ω
Definition. The primal function is given by

p(u) , inf
x∈Ω, g(x)≤u

f (x)

with domain

dom p , {u ∈ Rr : ∃ x ∈ Ω with g(x) ≤ u}

In order to keep things simple, we will make the assumption that the
primal problem is always bounded.

Assumption. Assume that p(u) > −∞ for all u ∈ dom p. Then,
p : Rr → R ∪ {∞} is an extended-real valued function.

7 – 23

The Primal Problem

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ u

x ∈ Ω

Theorem. Suppose that Ω is convex, and that f (·) and gj(·),
1 ≤ j ≤ r , are convex over Ω. Then, p(·) is convex.

Theorem. If u1 ≥ u2, then p(u1) ≤ p(u2).
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The Dual Function

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ 0

x ∈ Ω

Then, for µ ≥ 0,

q(µ), inf
x∈Ω

f (x) + µ>g(x)

= inf
x, u

{
f (x) + µ>g(x) : x ∈ Ω, u ∈ Rr , g(x) ≤ u

}

= inf
x, u

{
f (x) + µ>u : x ∈ Ω, u ∈ Rr , g(x) ≤ u

}

= inf
u∈Rr

inf
x∈Ω, g(x)≤u

f (x) + µ>u

= inf
u∈Rr

µ>u + inf
x∈Ω, g(x)≤u

f (x)

= −p∗(−µ)

7 – 25

Sensitivity

f : Ω→ R
g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to g(x) ≤ u

x ∈ Ω

Theorem. Suppose that strong duality holds, and the dual optimum is
attained when u = 0, with µ∗ being a geometric multiplier. Then, for all
u ∈ Rn ,

p(u) ≥ p(0)− u>µ∗

Proof. For all x ∈ Ω with g(x) ≤ u,

p(0) = q(µ∗) ≤ f (x) + g(x)>µ∗ ≤ f (x) + u>µ∗

The result follows.

Note: If p(·) is convex and differentiable, this result implies that

∇p(0) = −µ∗
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Why is Convexity Important?

A convex function has no local minima that are not global minima

A convex set is connected and has feasible directions at every
point

A convex set can be characterized by extreme points or
supporting hyperplanes

Efficient algorithms are available for solving convex optimization
problems

8 – 3

Equivalent Formulations

Two optimization problems are equivalent if the solution of one can be
readily obtained from the other, and vice versa.

The same optimization problem can admit multiple, different
formulations. Some formulations may be more advantageous than
others:

More or fewer variables/constraints

Simpler or more complicated objective function/constraint set

Sparse vs. not-sparse

Convex vs. non-convex

Differentiable vs. non-differentiable

Decentralized vs. centralized

Different dual problems
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Standard Forms

A convex optimization problem in standard form is:

minimize f (x)
subject to Ax = b

gi(x) ≤ 0, ∀ 1 ≤ i ≤ r
x ∈ Rn

f : Rn → R ∪ {∞}, convex
gi : Rn → R ∪ {∞}, convex
A ∈ Rm×n , b ∈ Rm

Convex objective

Convex inequality constraints

Linear equality constraints

8 – 5

Standard Forms

If an optimization problem can be converted to more specialized
standard form, it can be solved efficiently by off-the-shelf software.

Some common standard forms for convex problems are:

Linear Program (LP)

minimize c>x
subject to Ax = b

Gx ≤ h
x ∈ Rn

c ∈ Rn

A ∈ Rm×n , b ∈ Rm

G ∈ Rr×n , h ∈ Rr

linear objective, linear equality/inequality constraints
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Standard Forms

Quadratic Program (QP)

minimize 1
2x>Qx + c>x

subject to Ax = b
Gx ≤ h
x ∈ Rn

Q ∈ Rn×n symmetric, positive
semidefinite
c ∈ Rn

A ∈ Rm×n , b ∈ Rm

G ∈ Rr×n , h ∈ Rr

convex quadratic objective, linear equality/inequality constraints

Examples: portfolio optimization, linear regression

LP ⊂ QP

8 – 7

Standard Forms

Quadratically Constrained Quadratic Program (QCQP)

minimize 1
2x>Qx + c>x

subject to Ax = b
1
2x>Pix + g>i x + hi ≤ 0,
∀ 1 ≤ i ≤ r
x ∈ Rn

Q, Pi ∈ Rn×n symmetric,
positive semidefinite
c ∈ Rn

A ∈ Rm×n , b ∈ Rm

gi ∈ Rn , hi ∈ R

convex quadratic objective, convex quadratic inequality constraints,
linear equality constraints

LP ⊂ QP ⊂ QCQP
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Standard Forms

Second Order Cone Program (SOCP)

minimize c>x
subject to Ax = b

‖Fix + qi‖ ≤ g>i x + hi ,
∀ 1 ≤ i ≤ r
x ∈ Rn

c ∈ Rn

A ∈ Rm×n , b ∈ Rm

Fi ∈ Rni×n , qi ∈ Rni

gi ∈ Rn , hi ∈ R

linear objective and equality constraints, second-order cone
constraints

LP ⊂ QP ⊂ QCQP ⊂ SOCP

8 – 9

Standard Forms

Semidefinite Program (SDP)

minimize c>x
subject to Ax = b

x1F1 + · · ·+ xnFn + H � 0
x ∈ Rn

Fi ,H ∈ Rk×k , symmetric
c ∈ Rn

A ∈ Rm×n , b ∈ Rm

linear objective and equality constraints, linear matrix inequalities

LP ⊂ QP ⊂ QCQP ⊂ SOCP ⊂ SDP

8 – 10



Example: Eigenvalue Minimization

A0,A1, . . . ,An ∈ Rk×k symmetric matrices

A(x) , A0 + x1A1 + · · ·+ xnAn

minimize
x∈Rn

λmax
(
A(x)

)
, largest eigenvalue of A(x)

Note that

λmax
(
A(x)

) ≤ t ⇔ A(x) � tI

Equivalent SDP formulation:
minimize t
subject to A(x) � tI

x ∈ Rn , t ∈ R

8 – 11

Transformation of Objective/Constraints

f : Ω→ R
h : Ω→ Rm

g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω

Suppose:

φ : R→ R is a strictly increasing function

ψ : Rm → Rm satisfies ψ(u) = 0 if and only if u = 0
χ : Rr → Rr satisfies χ(v) ≤ 0 if and only if v ≤ 0

Then, an equivalent problem is:

f̃ (x) = φ(f (x))
h̃(x) = ψ(h(x))
g̃(x) = χ(g(x))

minimize f̃ (x)
subject to h̃(x) = 0

g̃(x) ≤ 0
x ∈ Ω
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Transformation of Objective/Constraints: Example

Consider the least-norm approximation problems:

minimize ‖Ax − b‖
subject to x ∈ Rn

minimize ‖Ax − b‖2
subject to x ∈ Rn

These problems have the same global optimum, and both are convex.
However:

the objective in first problem is not differentiable for x with
Ax − b = 0, it is an SOCP

the second objective is differentiable for all x, and, in fact, is a QP

8 – 13

Change of Variables

f : Ω→ R
h : Ω→ Rm

g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω

Suppose φ : Ω̃→ Ω is surjective. Then, an equivalent problem is:

f̃ (z) = f (φ(z))
h̃(z) = h(φ(z))
g̃(z) = g(φ(z))

minimize f̃ (z)
subject to h̃(z) = 0

g̃(z) ≤ 0
z ∈ Ω̃
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Example: Geometric Programming

Definition. A monomial is a function f : (0,∞)n → R of the form

f (x) = cxa1
1 xa2

2 · · · xan
n

where c > 0 and ai ∈ R.

Definition. A posynomial is a function f : (0,∞)n → R that is a sum of
monomials, that is, of the form

f (x) =
K∑

k=1
ckxa1k

1 xa2k
2 · · · xank

n

where ck > 0 and aik ∈ R.

8 – 15

Example: Geometric Programming

Definition. A geometric program (GP) is an optimization program of
the form

minimize f (x)
subject to hi(x) = 1, ∀ 1 ≤ i ≤ m

gj(x) ≤ 1, ∀ 1 ≤ j ≤ r
x > 0
x ∈ Rn

where

f : (0,∞)n → R is a posynomial

each hi : (0,∞)n → R is a monomial

each gj : (0,∞)n → R is a posynomial
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Example: Maximum Volume Box

maximize x1x2x3
subject to x1x2 + x2x3 + x1x3 ≤ c/2 (c > 0)

x > 0
x ∈ R3

This is equivalent to the standard form GP

minimize x−1
1 x−1

2 x−1
3

subject to 2
c x1x2 + 2

c x2x3 + 2
c x1x3 ≤ 1

x > 0
x ∈ R3

8 – 17

Geometric Programming: Convex Form

GPs are not convex. However, they can easily be converted to a
convex form. Consider the posynomial

f (x) =
K∑

k=1
ckxa1k

1 xa2k
2 · · · xank

n

Apply change of variables yi = log xi (since xi > 0),

f (y) =
K∑

k=1
exp

( n∑

i=1
aikyi + bk

)
=

K∑

k=1
exp(a>k y + bk)

where ak = (a1k , . . . , ank) and bk = log ck .

Taking a logarithm,

log f (y) = log

( K∑

k=1
exp(a>k y + bk)

)

This is a convex function.
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Geometric Programming: Convex Form

Definition. A convex form GP is an optimization program of the form

minimize log




K0∑

k=1
exp(a>k y + bk)




subject to c>i y + di = 0, ∀ 1 ≤ i ≤ m

log




Kj∑

k=1
exp(e>kjy + fkj)


 ≤ 0, ∀ 1 ≤ j ≤ r

y ∈ Rn

Note that if Kj = 1 for all 0 ≤ j ≤ r , this reduces to an LP.
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Eliminating Equality Constraints

f : Rn → R
h : Rn → Rm

g : Rn → Rr

minimize f (x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Rn

Suppose φ : Rk → Rn is such that h(x) = 0 if and only if x = φ(z), for
some z ∈ Rk . Then, an equivalent problem is:

f̃ (z) = f (φ(z))
g̃(z) = g(φ(z))

minimize f̃ (z)
subject to g̃(z) ≤ 0

z ∈ Rk
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Eliminating Equality Constraints

f : Rn → R
A ∈ Rm×n , b ∈ Rm

g : Rn → Rr

minimize f (x)
subject to Ax = b

g(x) ≤ 0
x ∈ Rn

If Ax = b has a solution, then all solutions are of the form x = Fz + x0
for z ∈ Rk , where F ∈ Rn×k , and x0 is any solution. We can pick
k = n − rank(A). Then,

minimize f (Fz + x0)
subject to g(Fz + x0) ≤ 0

z ∈ Rk

Note that this problem is of smaller dimension and has no equality
constraints. Convexity is also preserved.
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Adding Equality Constraints

Adding equality constraints can be helpful for decomposing and
optimization problem into independent subproblems. Consider:

Ai ∈ Rmi×n , b ∈ Rmi

f : Rm0 → R
gi : Rmi → R

minimize f (A0x + b0)
subject to gi(Aix + bi) ≤ 0, ∀1 ≤ i ≤ r

x ∈ Rn

This is equivalent to:
minimize f (y0)
subject to gi(yi) ≤ 0, ∀ 1 ≤ i ≤ r

yi = Aix + bi , ∀ 0 ≤ i ≤ r
x ∈ Rn

yi ∈ Rmi , ∀ 0 ≤ i ≤ r

This problem has an objective and inequality constraints which are
independent.
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Partitioning

It is always true that

inf
x,y

f (x, y) = inf
x

f̃ (x), where f̃ (x) = inf
y

f (x, y)

For example:

f : Rn1 → R
g : Rn1×n2 → R
Ai ∈ Rm×ni , b ∈ Rm

Ωi ⊂ Rni

minimize f (x1) + g(x1, x2)
subject to A1x1 + A2x2 = b

xi ∈ Ωi , i = 1, 2

Equivalent problem:

g̃(x1) = inf
A2x2=c−A1x1,

x2∈Ω2

g(x1, x2) minimize f1(x1) + g̃2(x1)
subject to x1 ∈ Ω1

This is useful when g̃(·) is easy to compute.
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Epigraph Formulation

f : Ω→ R
h : Ω→ Rm

g : Ω→ Rr

Ω ⊂ Rn

minimize f (x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω

Equivalent problem:
minimize t
subject to f (x)− t ≤ 0

h(x) = 0
g(x) ≤ 0
x ∈ Ω
t ∈ R

This is useful often when f (·) is a ‘worst-case’ objective.

8 – 24



Example: Min-Max Facility Location

yi ∈ Rn
minimize max

1≤i≤r
‖x − yi‖

subject to x ∈ Rn

Equivalent problem:
minimize t
subject to ‖x − yi‖2 ≤ t, ∀ 1 ≤ i ≤ n

x ∈ Rn

t ∈ R

This is a QCQP.
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Linear-Fractional Programming

f (x) = c>x + d
e>x + f

minimize f (x)
subject to Ax = b

Gx ≤ h
x ∈ Rn

dom f , {x ∈ Rn : e>x + f > 0}

Note: f (·) is not convex!

c, e ∈ Rn

d, f ∈ R
A ∈ Rm×n , b ∈ Rm

G ∈ Rr×n , h ∈ Rr

Equivalent problem: (if the LFP is feasible)
minimize c>y + dz
subject to Az − bz = 0

Gy − hz ≤ 0
e>y + fz = 1
y ∈ Rn , z ≥ 0

This is a LP.
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Robust Optimization

The parameters in an optimization problem are often uncertain. For
example, consider the LP:

minimize c>x
subject to a>i x ≤ bi , ∀ 1 ≤ i ≤ r

x ∈ Rn

Suppose there is some uncertainty in {ai}. We would like “robust”
solutions which do not require knowledge of the precise value of ai .
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Robust Optimization

One approach is to require the constraints to hold for all ai in a set
Ei ⊂ Rn :

minimize c>x
subject to a>i x ≤ bi , ∀ ai ∈ Ei , 1 ≤ i ≤ r

x ∈ Rn

Equivalent problem with worst-case constraints:

SEi (x) , sup
ai∈Ei

a>i x

= I ∗Ei (x)

minimize c>x
subject to SEi (x) ≤ bi , ∀ 1 ≤ i ≤ r

x ∈ Rn
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Robust Optimization

Suppose we take Ei to be an ellipsoid:

Ei = {āi + Piu : ‖u‖ ≤ 1}
Here, āi ∈ Rn , Pi ∈ Rn×n . The axes of the ellipse are determined by
the eigenvalues/eigenvectors of P>i Pi .

Then,
SEi (x) = sup

‖u‖≤1
(āi + Piu)>x = ā>i x + ‖P>i x‖

Thus, the robust LP is a SOCP:
minimize c>x
subject to ā>i x + ‖P>i x‖ ≤ bi , ∀ 1 ≤ i ≤ r

x ∈ Rn

8 – 29

Robust Optimization

Suppose we take Ei to be a bounded polyhedron,

Ei = {ai ∈ Rn : Eiai ≤ fi}
Here, Ei ∈ Rmi×n , fi ∈ Rmi .

Then,
SEi (x) = sup

Eiy≤fi
x>y

Since Ei is bounded, the optimum must occur at a vertex
{āi,1, . . . , āi,ki}.

Thus, the robust LP is also an LP (with more constraints):
minimize c>x
subject to ā>i,jx ≤ bi , ∀ 1 ≤ i ≤ r , 1 ≤ j ≤ ki

x ∈ Rn
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Robust Optimization

Alternatively, by duality of LPs,

SEi (x) = sup
Eiy≤fi

x>y = inf
E>i zi=x, zi≥0

f>i zi

Thus, the robust LP can be expressed as
minimize c>x
subject to f>i zi ≤ bi , ∀ 1 ≤ i ≤ r

E>i zi − x = 0, ∀ 1 ≤ i ≤ r
zi ≥ 0, ∀ 1 ≤ i ≤ r
zi ∈ Rmi

x ∈ Rn
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Norm Approximation

minimize
x∈Rn

‖Ax − b‖ A ∈ Rm×n , b ∈ Rm , m ≥ n
‖ · ‖ a norm on Rn

Interpretation: Suppose x∗ is an optimal solution

geometric: Ax∗ is the point in im A closest to b
estimation: Consider a linear measurement model

y = Ax +v
y are observations/measurements
x is unknown
v is measurement error

Given y = b, then the best guess of x is x∗

optimal design:
x are design variables (input), Ax is the result (output)

x∗ is the design that best approximates the desired result b

9 – 3

Norm Approximation: Examples

Example. Least-squares approximation (‖ · ‖2):
Solve the normal equations A>Ax = A>b

If rank A = n, then x∗ = (A>A)−1A>b

Example. Chebyshev approximation (‖ · ‖∞):
Solve the LP

minimize t
subject to −t1 ≤ Ax − b ≤ t1

x ∈ Rn , t ∈ R

Example. Sum of absolute residuals (‖ · ‖1):
Solve the LP

minimize 1>y
subject to −y ≤ Ax − b ≤ y

x ∈ Rn , y ∈ Rn
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Penalty Functions

minimize φ(r1) + . . .+ φ(rm)
subject to r = Ax − b

r ∈ Rm , x ∈ Rn
A ∈ Rm×n , b ∈ Rm , m ≥ n

Here, φ : R→ R is a convex penalty function.

Examples:

`p-norm: φ(u) = |u|p, p ∈ [1,∞)
Deadzone-linear with width a: φ(u) = max (0, |u| − a)
Log-barrier with limit a:

φ(u) =
{
−a2 log

(
1− (u/a)2) if |u| < a

∞ otherwise

9 – 5

Least-Norm Problems

minimize ‖x‖
subject to Ax = b

x ∈ Rn

A ∈ Rm×n , b ∈ Rm , m ≤ n
‖ · ‖ a norm on Rn

Interpretation: Suppose x∗ is an optimal solution

geometric: x∗ is the point in the affine set {x : Ax = b} with
minimum distance to 0
estimation: b = Ax are (perfect) measurements of x

x∗ is the smallest (‘most plausible’) estimate consistent with the
measurements

optimal design:
x are design variables (input), b is the required result (output)

x∗ is smallest (‘most efficient’) design that meets the requirements
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Least-Norm Problems: Examples

Example. Least-squares solution of linear equations (‖ · ‖2):
Solve the optimality conditions

2x + A>v = 0, Ax = b.

Example. Minimum sum of absolute values (‖ · ‖1):
Solve the LP

minimize 1>y
subject to −y ≤ x ≤ y

Ax = b
x ∈ Rn , y ∈ Rn

This tends to produce a sparse solution x∗

Extension: Least-penalty problem
minimize φ(x1) + . . .+ φ(xn)
subject to Ax = b, x ∈ Rn

φ : R→ R a convex
penalty function

9 – 7

Regularized Approximation

minimize
x∈Rn

(‖Ax − b‖, ‖x‖)
A ∈ Rm×n , b ∈ Rm

Norms on Rn and Rm can be
different

Interpretation: Find a good approximation Ax ≈ b with small x

estimation: Linear measurement model y = Ax + v with prior
knowledge that ‖x‖ is small

optimal design: Small x is cheaper or more efficient, or the linear
model y = Ax is only valid for small x
robust approximation: Good approximation Ax ≈ b with small x
is less sensitive to errors in A than good approximation with large
x
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Scalarized Regularization

minimize
x∈Rn

‖Ax − b‖+ γ‖x‖, γ > 0

Solution for various values of γ traces out optimal trade-off curve

Tikhonov Regularization:

minimize
x∈Rn

‖Ax − b‖22 + γ‖x‖22, γ > 0

⇒ minimize
x∈Rn

∥∥∥∥∥

[
A√
γI

]
x −

[
b
0

]∥∥∥∥∥

2

2
⇒ x∗ = (A>A + γI )−1A>b

9 – 9

Scalarized Regularization

Smoothness Regularization:

minimize
x∈Rn

‖Ax − b‖22 + γ‖Dx‖22, γ > 0

for some ‘differentiation’ operator D ∈ Rk×n

⇒ x∗ = (A>A + γD>D)−1A>b

Lasso:
minimize

x∈Rn
‖Ax − b‖22 + γ‖x‖1, γ > 0

Solve the QP
minimize ‖Ax − b‖22 + γ1>y
subject to −y ≤ x ≤ y

x ∈ Rn , y ∈ Rn

Heuristic for ‘regressor selection’
minimize ‖Ax − b‖2
subject to card(x) ≤ k

x ∈ Rn
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Robust Approximation

minimize
x∈Rn

‖Ax − b‖ with uncertain A

Two approaches:

stochastic: assume A is random, optimize the expected error

minimize
x∈Rn

E
[‖Ax − b‖] (Always convex!)

worst-case: assume A comes from an uncertainty set A,
optimize the worst-case error

minimize
x∈Rn

sup
A∈A

‖Ax − b‖ (Always convex!)

Generally need some structure for these problems to be tractable
(certain norms, distributions, uncertainty sets, etc.)

9 – 11

Stochastic Robust Approximation

minimize
x∈Rn

E
[‖Ax − b‖]

Assume that A takes values in the set {A1, . . . ,Ak} ⊂ Rm×n with

P (A = Ai) = pi , i = 1, . . . , k

This sum-of-norms problem can be written as

minimize p>t
subject to ‖Aix − b‖ ≤ ti ,

i = 1, . . . , k
x ∈ Rn , t ∈ Rk

‖ · ‖2 ⇒ SOCP

‖ · ‖1,‖ · ‖∞ ⇒ LP
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Stochastic Robust Least-Squares

minimize
x∈Rn

E
[‖Ax − b‖22

]

We can write A = Ā + U , where

Ā , E[A]
U , A− E[A] is zero-mean

E
[‖Ax − b‖22

]
= ‖Āx − b‖22 + x>Px, where P , E

[
U>U

]

= ‖Āx − b‖22 + ‖P1/2x‖22
Example. If A has i.i.d. entries, P = δI ⇒ Tikhonov regularization

9 – 13

Worst-Case Robust Approximation

minimize
x∈Rn

sup
A∈A

‖Ax − b‖ A ⊂ Rm×n bounded, non-empty

finite set: A , {A1, . . . ,Ak}

Epigraph form:
minimize t
subject to ‖Aix − b‖ ≤ t,

i = 1, . . . , k
x ∈ Rn , t ∈ R

‖ · ‖2 ⇒ SOCP

‖ · ‖1,‖ · ‖∞ ⇒ LP

polyhedron:
A = conv {A1, . . . ,Ak}, same as finite case

Tractable if there are not too many vertices of A
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Worst-Case Least Squares
minimize

x∈Rn
sup
A∈A

‖Ax − b‖2 A ⊂ Rm×n bounded, non-empty

uncertainty ellipsoid:
A ,

{
[a1 · · · am ]> : ai ∈ Ei , i = 1, . . . ,m

}

with
Ei , {āi + Piu : ‖u‖2 ≤ 1}

Equivalent to the SOCP
minimize δ
subject to ā>i x − bi + ‖P>i x‖2 ≤ ti ,

i = 1, . . . ,m
−ā>i x + bi + ‖P>i x‖2 ≤ ti ,

i = 1, . . . ,m
‖t‖2 ≤ δ,
x ∈ Rn , t ∈ Rm , δ ∈ R

9 – 15

Parametric Estimation

Suppose we wish to estimate the density p(y) of a random variable
given an observation.

In a parametric estimation problem, we would like to find the best
guess of p(y) from a family of densities px(y) indexed by x ∈ Ω.

The maximum likelihood (ML) estimation problem is given an
observation y is:

maximize px(y)
x ∈ Ω ⇐⇒ maximize log px(y)

x ∈ Ω

If Ω ⊂ Rn is a convex set and the log-likelihood
`(x) = log px(y)

is concave (for fixed y), this is a convex optimization problem.
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Example: Linear Measurements

yi = a>i x + vi , i = 1, . . . ,m

x ∈ Ω ⊂ Rn is a vector of unknown parameters

vi is IID measurement noise, with density p(z)
yi is a measurement, y ∈ Rm has density

px(y) =
m∏

i=1
p(yi − a>i x)

The ML estimation problem is

maximize `(x) =
m∑

i=1
log p(yi − a>i x)

subject to x ∈ Ω

This also has a least penalty approximation interpretation.

9 – 17

Example: Linear Measurements

Example. Gaussian noise: p(z) = 1√
2πσ2 e−z2/(2σ2), σ > 0

`(x) = −m
2 log(2πσ2)− 1

2σ2

m∑

i=1
(a>i x − yi)2

The ML estimate is a least-squares approximation.

Example. Laplacian noise: p(z) = 1
2αe−|z|/α, α > 0

`(x) = −m log 2α− 1
α

m∑

i=1
|a>i x − yi |

The ML estimate is an `1-norm approximation.
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Example: Linear Measurements

Example. Uniform noise: p(z) =
{

1/(2α) if z ∈ [−α, α]
0 otherwise

`(x) =
{
−m log 2α if |yi − a>i x| ≤ α, ∀ i
−∞ otherwise

The ML estimate is any x with |yi − a>i x| ≤ α, ∀ i.
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Example: Logistic Regression
Consider a random variable y ∈ {0, 1} with distribution

p = P(y = 1) = exp(a>x)
1 + exp(a>x)

x ∈ Rn are unknown parameters; a ∈ Rn are observable
explanatory variables
estimation problem: estimate x from m observations (ai , yi)

Assume that y1 = · · · = yk = 1, yk+1 = · · · = ym = 0.

`(x) = log




k∏

i=1

exp(a>i x)
1 + exp(a>i x)

m∏

i=k+1

1
1 + exp(a>i x)




=
k∑

i=1
a>i x −

m∑

i=1
log

(
1 + exp(a>i x)

)

This is concave.
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Linear Discrimination

Consider two sets of points

{x1, x2, . . . , xN} ⊂ Rn {y1, y2, . . . , yM} ⊂ Rn

We wish to separate these two points with a hyperplane, or, find
a ∈ Rn and b ∈ R so that:

a>xi + b > 0, i = 1, . . . ,N a>yi + b < 0, i = 1, . . . ,M

By normalizing, this is equivalent to

a>xi + b ≥ 1, i = 1, . . . ,N a>yi + b ≤ −1, i = 1, . . . ,M

This is a set of linear equalities in a and b.
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Robust Linear Discrimination

Consider the two hyperplanes:

H1 = {z ∈ Rn : a>z + b = 1} H2 = {z ∈ Rn : a>z + b = −1}

What is the distance (or, margin) between H1 and H2?

2
‖a‖2

To find the maximum margin classifier, solve:

minimize 1
2‖a‖2

subject to a>xi + b ≥ 1, i = 1, . . . ,N
a>yi + b ≤ −1, i = 1, . . . ,M
a ∈ Rn , b ∈ R
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Robust Linear Discrimination

Dual: maximize 1>λ+ 1>µ
subject to

∥∥∥
∑N

i=1 λixi −
∑M

i=1 µiyi
∥∥∥

2
≤ 1

2

1>λ = 1>µ
λ ≥ 0, µ ≥ 0, λ ∈ RN , µ ∈ RM

Interpretation:

Change variables: θ , λ/1>λ, γ , µ/1>µ, t , 1/(1>λ+ 1>µ)
minimize t
subject to

∥∥∥
∑N

i=1 θixi −
∑M

i=1 γiyi
∥∥∥

2
≤ t

θ ≥ 0, 1>θ = 1, γ ≥ 0, 1>γ = 1
θ ∈ RN , γ ∈ RM

The optimal value is the distance between convex hulls!

9 – 23

Robust Linear Discrimination

QP Form: minimize 1
2‖a‖22

subject to a>xi + b ≥ 1, i = 1, . . . ,N
a>yi + b ≤ −1, i = 1, . . . ,M
a ∈ Rn , b ∈ R

Dual: maximize 1>λ+ 1>µ− 1
2

∥∥∥
∑N

i=1 λixi −
∑M

i=1 µiyi
∥∥∥

2

2
subject to 1>λ = 1>µ

λ ≥ 0, µ ≥ 0, λ ∈ RN , µ ∈ RM
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Robust Linear Discrimination

Dual: maximize 1>λ+ 1>µ− 1
2

∥∥∥
∑N

i=1 λixi −
∑M

i=1 µiyi
∥∥∥

2

2
subject to 1>λ = 1>µ

µ ≥ 0, λ ≥ 0
µ ∈ RN , λ ∈ RM

Primal optimum can be constructed from dual optimum by

a =
N∑

i=1
λixi −

M∑

i=1
µiyi

⇒ Linear combination of support vectors on the margin

Constructing the dual requires only the inner products

{x>i xj , x>i yj , y>i yj}
In many cases, M ,N � n. We can solve the dual so long as
(N + M )2 is not too big, even if n =∞!

9 – 25

Approximate Linear Separation

minimize 1>u + 1>v
subject to a>xi + b ≥ 1− ui , i = 1, . . . ,N

a>yi + b ≤ −1 + vi , i = 1, . . . ,M
u ≥ 0, v ≥ 0, u ∈ RN , v ∈ RM

a ∈ Rn , b ∈ R

Introduced slack variables u, v (soft constraints)

Linear program in (a, b, u, v)
At optimum,

ui = max {1− a>xi − b, 0}, vi = max {1 + a>yi + b, 0}
Heuristic to minimize number of misclassifications

Other penalty functions possible, but be careful to maintain
convexity!
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Support Vector Classifier

minimize 1
2‖a‖22 + C

(
1>u + 1>v

)

subject to a>xi + b ≥ 1− ui , i = 1, . . . ,N
a>yi + b ≤ −1 + vi , i = 1, . . . ,M
u ≥ 0, v ≥ 0, u ∈ RN , v ∈ RM

a ∈ Rn , b ∈ R

Parameter C ≥ 0 controls trade-off between maximizing margin
and minimizing misclassifications

How can we this solve efficiently if n � M ,N?

Dual: maximize 1>λ+ 1>µ− 1
2

∥∥∥
∑N

i=1 λixi −
∑M

i=1 µiyi
∥∥∥

2

2
subject to 1>λ = 1>µ

0 ≤ µ ≤ C1, 0 ≤ λ ≤ C1
µ ∈ RN , λ ∈ RM

9 – 27

Non-Linear Features

Separate two sets of points by a non-linear function

f (xi) > 0, i = 1, . . . ,N f (yi) < 0, i = 1, . . . ,M

Choose a linearly parameterized family of functions

f (z) , θ>F(z)

Here,
F = (F1, . . . ,Fk) : Rn → Rk

are basis functions

Solve the linear inequalities in θ

θ>f (xi) ≥ 1, i = 1, . . . ,N θ>f (yi) ≤ −1, i = 1, . . . ,M

9 – 28
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1. Vector spaces, Banach spaces

2. Weierstrass’ theorem

3. Inner product spaces, Hilbert spaces

4. Projection theorem

5. Linear functionals

6. Dual spaces
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Vector Spaces

Definition. A vector space is a set X equipped with the operations of

addition: x, y ∈ X ⇒ x + y ∈ X
scalar multiplication: x ∈ X , α ∈ R ⇒ αx ∈ X

that satisfies the axioms

1. x + y = y + x (commutative)

2. (x + y) + z = x + (y + x) (associative)

3. there exists 0 ∈ X with x + 0 = x
4. α(x + y) = αx + αy (distributive)

5. (α+ β)x = αx + βx (distributive)

6. (αβ)x = α(βx) (associative)

7. 0x = 0, 1x = x

10 – 3

Examples

Example. X = Rn

Example. X = R∞, the set of (countably) infinite sequences of real
numbers

Example. X = {x ∈ R∞ : x has finitely many non-zero terms}

Example. X = c0 , {x ∈ R∞ : lim
n→∞ xn = 0 }

Example. X = C [a, b] , {continuous functions from [a, b] to R}
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Subspaces, etc.

Definition. The set C ⊂ X is a subspace if, for all points x, y ∈ C, and
scalars α, β ∈ R,

αx + βy ∈ C

Definition. The set C ⊂ X is affine (linear variety) if, for all points
x, y ∈ C, and scalars λ ∈ R,

λx + (1− λ)y ∈ C

Definition. The set C ⊂ X is convex if, for all points x, y ∈ C, and
scalars 0 ≤ λ ≤ 1,

λx + (1− λ)y ∈ C

Definition. The set C ⊂ X is a cone if, for all points x ∈ C, and scalars
λ ≥ 0,

λx ∈ C
10 – 5

Linear Independence, Dimension

Definition. A linear combination of the (finite) collection of vectors
{x1, . . . , xn} is a sum of the form

α1x1 + · · ·+ αnxn

The subspace generated by the set S ⊂ X is the set of all linear
combinations of vectors in S.

Definition. A vector x ∈ X is linearly independent from a set S ⊂ X if
it cannot be expressed as a linear combination of elements of S.

Definition. A set of vectors S ⊂ X is linear independent if, for each
x ∈ S, x is linearly independent from S \ {x}.

Definition. A linearly independent, finite set S ⊂ X is said to be a
(finite) basis if S generates X . If a vector space has a finite basis, it is
called finite dimensional, otherwise it is called infinite dimensional.
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Normed Linear Spaces

Definition. A normed vector space is a vector space X associated
with a real-valued function ‖ · ‖ on X such that

1. ‖x‖ = 0 if and only if x = 0
2. ‖αx‖ = |α|‖x‖
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖

10 – 7

Examples

Example. C [a, b], ‖x‖ , max
a≤t≤b

|x(t)|

Example.
D[a, b] , {continuously differentiable functions from [a, b] to R}

‖x‖ , max
a≤t≤b

|x(t)|+ max
a≤t≤b

|ẋ(t)|

Example. finitely non-zero sequences, ‖x‖ ,
∞∑

i=1
|xi |

Example. real-valued continuous functions over [a, b],

‖x‖ ,
∫ b

a
|x(t)| dt
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Classical Normed Spaces

Definition. For 1 ≤ p ≤ ∞, the normed linear space `p is the space of
all sequences x ∈ R∞ with

∞∑

i=1
|xi |p <∞, if p <∞

sup
i
|xi | <∞, if p =∞

with norm

‖x‖p ,





( ∞∑

i=1
|xi |p

)1/p

if p <∞

sup
i
|xi | if p =∞

10 – 9

Classical Normed Spaces

Definition. For 1 ≤ p <∞, the normed linear space Lp[a, b] is the
space of all measurable, real-valued functions x : [a, b]→ R where
|x(t)|p is Lebesgue integrable, with norm

‖x‖p ,
(∫ b

a
|x(t)|p dt

)1/p

Note: Functions in Lp[a, b] are considered equal if the differ only on a
set of measure zero. For example, ‖x‖p = 0 implies that x(t) = 0
except possibly on a set of measure zero, we identify all such
functions with the element 0 ∈ Lp[a, b].
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Classical Normed Spaces

Definition. The normed linear space L∞[a, b] is the space of all
measurable, real-valued functions x : [a, b]→ R that are bounded
except possibly on a set of measure zero, with norm

‖x‖∞ , inf
y(t)=x(t) a.e.

sup
a≤t≤b

|y(t)|

= ess sup
a≤t≤b

|x(t)|

10 – 11

Basic Topology

Consider a normed linear space X .

Definition. An open ball (or, “neighborhood”) around a point x ∈ X
with radius r > 0 is the set

Nr(x) , {y ∈ X : ‖x − y‖ < r}
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Open and Closed Sets

Consider a set E ⊂ X .

Definition. A point x ∈ E is an interior point if there exists an open ball
Nr(x) such that Nr(x) ⊂ E . The interior int E is defined to be the set
of all interior points of E .

Definition. E is open if E = int E .

Definition. A point x ∈ X is a closure point of E if, for every open ball
Nr(x), there exists y ∈ E with y ∈ Nr(x). The closure cl E is defined to
be the set of all closure points of E .

Definition. E is closed if every closure point if E = cl E .

10 – 13

Convergence

Definition. A sequence of vectors {xk} ⊂ X converges to a limit
x ∈ X if

lim
k→∞

‖x − xk‖ = 0

We say xk → x.

10 – 14



Compactness

Consider a set E ⊂ X .

Definition. E is compact if, given a sequence {xk} ⊂ E , there is a
subsequence {xki} converging to an element x ∈ E .

Note: In infinite dimensional vector spaces, compactness is not
equivalent to being closed and bounded!

10 – 15

Transformations

Definition. If X and Y are two vector spaces, a transformation is a
function T : X → Y.

Definition. If X is a vector space, a functional is a map f : X → R.

Definition. A transformation T : X → Y between two normed vector
spaces is continuous at the point x ∈ X if, for every sequence
{xk} ⊂ X with xk → x,

T (xk)→ T (x)

We say T (·) is continuous if it is continuous at all points of X .
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Weierstrass’ Theorem

Theorem. (Weierstrass) Let X be a normed linear space, and C ⊂ X
a non-empty, compact set. If f : C → R is a continuous function, then
the optimization program

minimize f (x)
subject to x ∈ C

has a globally optimal solution.

10 – 17

Weierstrass’ Theorem: Proof

Since C in non-empty, set

M , inf
x∈C

f (x) ∈ [−∞,∞)

Then, there exists a sequence xk ⊂ C with f (xk)→ M .

By compactness, there must exist a convergent subsequence {xki},
with xki → x ∈ C. By continuity, we must have f (x) = M .

Thus, M > −∞, and the global optimum is achieved by x.
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Banach Spaces

Let X be a normed linear space.

Definition. A sequence {xn} ⊂ X is a Cauchy sequence if, given
ε > 0, there is an integer N such that

‖xn − xm‖ < ε

for all m,n > N .

Definition. A normed linear space X is complete if every Cauchy
sequence converges. Such a space is known as a Banach space.

10 – 19

Examples

Example. C [a, b] (with sup-norm) is a Banach space

Example. `p, 1 ≤ p ≤ ∞, is a Banach space

Example. Lp[a, b], 1 ≤ p ≤ ∞, is a Banach space
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Inner Product Spaces

Definition. A (real) inner product space X is a vector space together
with an inner product 〈·, ·〉 : X × X → R that satisfies the axioms

1. 〈x, y〉 = 〈y, x〉 (symmetry)

2. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 (linearity)

3. 〈αx, y〉 = α〈x, y〉 (linearity)

4. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0 (positive definiteness)

Given an inner product space X , the norm induced by the inner
product is

‖x‖ ,
√
〈x, x〉

10 – 21

Inner Product Spaces

Let X be an inner product space.

Lemma. (Cauchy-Schwartz Inequality) For all x, y ∈ X ,

|〈x, y〉| ≤ ‖x‖‖y‖
with equality if and only if x = λy or y = 0.

Proof. If y = 0, the result is clear. If y 6= 0,

0 ≤ 〈x − λy, x − λy〉 = 〈x, x〉 − 2λ〈x, y〉+ λ2〈y, y〉
Set λ = 〈x, y〉/〈y, y〉, then

0 ≤ 〈x, x〉 − 〈x, y〉2/〈y, y〉

An inner product can be thought of as defining an ‘angle’ θ between
non-zero x, y ∈ X by

cos θ = 〈x, y〉
‖x‖‖y‖
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Inner Product Spaces

Theorem. An inner product space equipped with the induced norm is
a normed linear space.

Proof.

‖x + y‖2 = 〈x + y, x + y〉 = ‖x‖2 + 2〈x, y〉+ ‖y2‖
≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2

10 – 23

Examples

Example. Rn , 〈x, y〉 = x>y, ‖x‖ = Euclidean norm

Example. `2, 〈x, y〉 =
∞∑

i=1
xiyi , ‖x‖ = `2-norm

Example. L2[a, b], 〈x, y〉 =
∫ b

a
x(t)y(t) dt, ‖x‖ = L2-norm

Definition. A complete inner product space is called a Hilbert space.

Rn , `2, and L2[a, b] are all Hilbert spaces
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Projection Theorem

Let X be a Hilbert space, and C ⊂ X a closed and non-empty convex
set. Fix the vector x ∈ X .

minimize ‖z − x‖
subject to z ∈ C

Theorem. For every x ∈ X , the optimization problem has a unique
global minimum x∗ called the projection of x onto C. A vector x ′ ∈ C is
equal to x∗ if and only if

〈x − x ′, z − x ′〉 ≤ 0, ∀ z ∈ C

10 – 25

Projection Theorem: Proof

To prove existence, let {zi} ⊂ C be a sequence with

‖zi − x‖ → δ , inf
z∈C
‖z − x‖

Note that for all w, v ∈ X ,

2‖w‖2 + 2‖v‖2 = ‖w + v‖2 + ‖w − v‖2 (Parallelogram law)
Then,

‖zi − zj‖2 = 2‖zi − x‖2 + 2‖zj − x‖2 − 4
∥∥∥∥x −

zi + zj
2

∥∥∥∥
2

Since C is convex, ∥∥∥∥x −
zi + zj

2

∥∥∥∥ ≥ δ
Thus

‖zi − zj‖2 ≤ 2‖zi − x‖2 + 2‖zj − x‖2 − 4δ2 → 0
Then, {zi} is a Cauchy sequence, thus zi → x∗ ∈ C and ‖x∗ − x‖ = δ
(continuity).
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Projection Theorem: Proof

To prove uniqueness, let x̃∗ ∈ C be a point with ‖x̃∗ − x‖ = δ. Define

zi =
{

x∗ i odd

x̃∗ i even

Clear ‖zi − x‖ → δ, so by the same argument as before, {zi} is a
Cauchy sequence and convergent. Then, x̃∗ = x∗.

10 – 27

Projection Theorem: Proof

We wish to show that

〈x − x∗, z − x∗〉 ≤ 0, ∀ z ∈ C
Suppose there is some z1 with

〈x − x∗, z1 − x∗〉 = ε > 0
Define

z(α) , (1− α)x∗ + αz1, 0 ≤ α ≤ 1
Then,

‖x− z(α)‖2 = (1−α)2‖x−x∗‖2 +2α(1−α)〈x−x∗, x− z1〉+α2‖x− z1‖2

This is a differentiable function of α, and
d

dα ‖x − z(α)‖2
∣∣∣
α=0

= −2〈x − x∗, z1 − z∗〉 = −2ε < 0
This contradicts the optimality of x∗.
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Projection Theorem: Proof

Conversely, suppose that there exists some x ′ ∈ C with

〈x − x ′, z − x ′〉 ≤ 0, ∀ z ∈ C
Then, if z ∈ C, z 6= x ′,

‖x − z‖2 = ‖x − x ′ + x ′ − z‖2
= ‖x − x ′‖2 + 2〈x − x ′, x ′ − z〉+ ‖x ′ − z‖2
> ‖x − x ′‖2

Thus, x ′ is the unique optimizer.

10 – 29

Linear Functionals

Definition. If X is a vector space, a linear functional is a functional
f : X → R such that

f (αx + βy) = αf (x) + βf (y)

Example. On Rn , for every y ∈ Rn , the function

f (x) = y>x
is a linear functional. Moreover, all linear functionals are of this form.

Example. On C [0, 1], the functional

f (x) = x(1/2)
is a linear functional.

Example. On L2[0, 1], for every y ∈ L2[0, 1], the functional

f (x) =
∫ 1

0
x(t)y(t) dt

is a linear functional.
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Linear Functionals

Let X be a normed linear space.

Theorem. If a linear functional is continuous at a point in X , it is
continuous over all of X .

Proof. Suppose f is linear and continuous at y, and xn → x. Then,
xn + y − x → y. Thus,

|f (xn)− f (x)| = |f (xn + y − x)− f (y)| → 0
by the linearity and continuity at y of f .

Most commonly, we check that a linear functional is continuous just
at 0.

10 – 31

A Discontinuous Linear Functional

Example.

X = {x ∈ R∞ : x has finitely many non-zero components}
‖x‖ = max

i
|xi |

Consider the linear functional

f (x) =
∞∑

i=`
`x`

Define x(k) to have 1/
√

k in the kth component, zero everywhere else.

‖x(k) − 0‖ = 1/
√

k → 0

f (x(k)) =
√

k →∞ 6= f (0)
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Linear Functionals

Let X be a normed linear space.

Definition. A linear functional f is bounded if there is a constant M
such that

|f (x)| ≤ M‖x‖, ∀ x ∈ X

Theorem. A linear functional is continuous if and only if it is bounded.

Proof. Suppose f is a bounded linear functional, with |f (x)| ≤ M‖x‖.
Then, if xn → 0, |f (xn)| ≤ M‖xn‖ → 0. Thus, f is continuous.

Conversely, assume that f is continuous. Then, there exists a δ > 0
such that |f (x)| < 1 for ‖x‖ ≤ δ. Thus, if x 6= 0,

|f (x)| =
∣∣∣∣f
(
δx
‖x‖

)∣∣∣∣
‖x‖
δ

<
‖x‖
δ
,

and 1/δ is a bound for f .

10 – 33

Dual Spaces

Let X be a normed linear space. We define the normed dual space X ∗
to be the space of bounded linear functionals on X , equipped with

addition: (f1 + f2)(x) , f1(x) + f2(x)
scalar multiplication: (αf )(x) , αf (x)
zero element: 0(x) , 0
norm:

‖f ‖∗, inf {M : |f (x)| ≤ M‖x‖, ∀ x ∈ X}

= sup
x 6=0

|f (x)|
‖x‖ = sup

‖x‖≤1
|f (x)| = sup

‖x‖=1
|f (x)|

Given a bounded linear functional x∗ ∈ X ∗, we will abuse notation to
write

〈x, x∗〉 , x∗(x)
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Dual Spaces

Theorem. If X is a normed linear space, the dual space X ∗ is a
Banach space.

Proof. Clearly X ∗ is a normed linear space. We need to show that it is
complete.
Given a Cauchy sequence {x∗n} and x ∈ X , note that

|x∗n(x)− x∗m(x)| ≤ ‖x∗n − x∗m‖‖x‖
Then, {x∗n(x)} is a Cauchy sequence. Define x∗ point-wise by
x∗(x) = lim x∗n(x). It is easy to verify that x∗ is a linear operator, it is
bounded, and ‖x∗ − x∗n‖ → 0.
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Some Common Duals

Example. X = Rn , ‖x‖ = ‖x‖2 =
√

x>x
⇒ X ∗ = Rn , ‖x∗‖∗ = ‖x‖2
This space is self-dual.

Theorem. (Riesz-Fréchet) If X is a Hilbert space, then X ∗ = X .

Example. X = `p, 1 ≤ p <∞
⇒ X ∗ = `q , where 1/p + 1/q = 1 (if p = 1, q =∞)

Note: The dual to `∞ is not `1!

Example. X = Lp[a, b], 1 ≤ p <∞
⇒ X ∗ = Lq [a, b], where 1/p + 1/q = 1 (if p = 1, q =∞)

Note: The dual to L∞[a, b] is not L1[a, b]!

11 – 3

Functions of Bounded Variation

Definition. Given a function x : [a, b]→ R, define the total variation to
be

TV(x) , sup
n∑

i=1
|x(ti)− x(ti−1)|

where the supremum is taken over all partitions

a = t0 ≤ t1 ≤ · · · ≤ tn = b
of [a, b]. It is often written as

TV(x) =
∫ b

a
|dx(t)|

Definition. BV[a, b] is the space of functions on [a, b] of bounded total
variation with norm

‖x‖ = |x(a)|+ TV(x)

11 – 4



The Dual of C [a, b]

Theorem. (Riesz Representation Theorem) Suppose that f is a
bounded linear functional on C [a, b]. Then, there is a function
v ∈ BV[a, b] such that for all x ∈ C [a, b]

f (x) =
∫ b

a
x(t) dv(t)

Note: The representation v of a linear functional f is not unique. To
remove this ambiguity, define NBV[a, b] to be the set of functions
x ∈ BV[a, b] with x(a) = 0 that are right continuous on (a, b). Then,
C [a, b]∗ = NBV[a, b].

11 – 5

Hahn-Banach Theorem: Extension Form

Definition. A sublinear functional is a map p : X → R such that

1. p(x + y) ≤ p(x) + p(y), ∀ x, y ∈ X
2. p(αx) = αp(x), ∀ x ∈ X , α ≥ 0

Theorem. (Hahn-Banach) Let X be a normed linear space and p a
continuous, sublinear functional on X . SupposeM⊂ X is a
subspace, and f is a linear functional onM, with

f (m) ≤ p(m), ∀ m ∈M
Then, there is an extension of F of f fromM to X such that

F(x) ≤ p(x), ∀ x ∈ X
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Hahn-Banach Theorem: Proof Sketch

We describe the “induction” step: suppose y ∈ X \M, we will extend
f to the subspace

M′ = {m + αy : m ∈M, α ∈ R}

Given m1,m2 ∈M,

f (m1) + f (m2) = f (m1 + m2) ≤ p(m1 + m2) ≤ p(m1 − y) + p(m2 + y)

⇒ f (m1)− p(m1 − y) ≤ p(m2 + y)− f (m2)

⇒ c , sup
m∈M

f (m)− p(m − y) ≤ inf
m∈M

p(m + y)− f (m)

11 – 7

Hahn-Banach Theorem: Proof Sketch

If x ∈M′, the x can be uniquely written as m + αy, and we define the
extension

g(x) = f (m) + αc

Clearly g is linear. We would like to show that

g(m + αy) ≤ p(m + αy)

If α > 0,

f (m) + αc = α

[
c + f

(m
α

)]
≤ α

[
p
(m
α

+ y
)
− f

(m
α

)
+ f

(m
α

)]

= p(m + αy)

α < 0 is handled similarly.
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Hahn-Banach Theorem

Corollary. Let f be a bounded linear functional on a subspaceM of a
normed linear space X . There is an extension F defined on X with
‖F‖∗ = ‖f ‖M,∗.

Proof. Take p(x) = ‖f ‖M,∗‖x‖.

Corollary. Let x be an element of a normed linear space X . There
exists a bounded non-zero linear functional F with F(x) = ‖F‖∗‖x‖.

Proof. Suppose x 6= 0. On the subspace defined by x, define
f (αx) = α‖x‖. Clearly ‖f ‖ = 1. Extend f to the entire space.

If x = 0, any non-zero bounded linear functional will do, and we have
just proved that one exists.

11 – 9

Optimization Interpretation

Given a normed linear space X , a subspaceM, and a bounded linear
functional f onM, consider the optimization problem

minimize ‖x∗‖∗
subject to 〈x, x∗〉 = f (x), ∀ x ∈M

x∗ ∈ X ∗

The Hahn-Banach theorem implies that a global optimum exists, and
that the optimal value is ‖f ‖M,∗.
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Orthogonality and Alignment

Definition. A vector x ∈ X and a functional x∗ ∈ X ∗ are aligned if

〈x, x∗〉 = ‖x∗‖∗‖x‖

Definition. A vector x ∈ X and a functional x∗ ∈ X ∗ are orthogonal if

〈x, x∗〉 = 0

Definition. The orthogonal complement of a set of vectorsM⊂ X is
the set of functionals

M⊥ = {x∗ ∈ X ∗ : 〈x, x∗〉 = 0, ∀ x ∈M}
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Minimum Norm Duality

Theorem. Suppose X is a normed linear space,M⊂ X is a
subspace, and x ∈ X . Then,

inf
m∈M

‖x −m‖ = max
‖x∗‖∗≤1
x∗∈M⊥

〈x, x∗〉

where the maximum is achieved for some x∗0 ∈M⊥.

If m0 ∈M is achieves the minimum, then x∗0 is aligned with x −m0.

Further, if m0 ∈M and there is a non-zero vector x∗ ∈M⊥ aligned
with x −m0, then m0 achieves the minimum.
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Minimum Norm Duality: Proof

Set d , inf
m∈M

‖x −m‖.

For any ε > 0, suppose mε ∈M with ‖x −mε‖ ≤ d + ε. If x∗ ∈ X ∗ is
feasible for the dual,

〈x, x∗〉 = 〈x −mε, x∗〉 ≤ ‖x∗‖∗‖x −mε‖ ≤ d + ε

Since ε was arbitrary, 〈x, x∗〉 ≤ d.

Let N be the subspace spanned byM and x. Define f on N by

f (αx + m) = αd, ∀ α ∈ R, m ∈M
Then,

‖f ‖N ,∗ = sup
(α,m)

|α|d
‖αx + m‖ = sup

|α|d
|α|‖x + m/α‖ = d

inf ‖x + m/α‖ = 1

By H-B, there exists x∗0 ∈ X that is an extension of f , and ‖x∗0‖∗ = 1.
Clearly x∗0 ∈M⊥ and 〈x, x∗0 〉 = d, so x∗0 is optimal for the dual.
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Minimum Norm Duality: Proof

Suppose m0 is a primal optimal. Then,

〈x −m0, x∗0 〉 = 〈x, x∗0 〉 = d = ‖x −m0‖
Thus, x −m∗0 and x∗0 are aligned.

For the last part, suppose m0 ∈M and assume that x∗ ∈M⊥ is
non-zero vector aligned with x −m0. WLOG, ‖x∗‖∗ = 1. Then,

〈x, x∗〉 = 〈x −m0, x∗〉 = ‖x −m0‖
whereas, for all m ∈M,

〈x, x∗〉 = 〈x −m0, x∗〉 ≤ ‖x −m‖
Thus, ‖x −m0‖ ≤ ‖x −m‖.
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Minimum Norm Duality

Theorem. Suppose X is a normed linear space,M⊂ X is a
subspace, and x∗ ∈ X ∗. Then,

min
m∗∈M⊥

‖x∗ −m∗‖∗ = sup
‖x‖≤1
x∈M

〈x, x∗〉

where the minimum is achieved for some m∗0 ∈M⊥.

If x0 ∈M achieves the maximum, then x0 is aligned with x∗ −m∗0 .
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Applications of Minimum Norm Duality

General strategy:

1. Formulate as a minimum norm problem in a dual space, this
guarantees the existence of an optimal solution

2. To characterize the optimal solution, use the alignment properties

3. Dual may be easier (e.g., finite dimensional)
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Example: Chebyshev Approximation

Suppose f ∈ C [a, b]. We see a polynomial p0 of degree n or less
which approximates f in the sense of minimizing

‖f − p0‖ , max
a≤t≤b

|f (t)− p0(t)|

Theorem. (Tonelli) If p0 is the minimizing polynomial, then
|f (t)− p0(t)| achieves its maximum at at least n + 2 points in [a, b].

12 – 9

Minimum Norm Problems with Affine Constraints

Consider fixed yi ∈ X , i = 1, . . . ,n, and define the affine constraint
set

D = {x∗ ∈ X ∗ 〈yi , x∗〉 = ci , 1 ≤ i ≤ n}
For a ∈ Rn , define Ya ∈ X by

Ya ,
n∑

i=1
yiai

Theorem. Suppose D is non-empty. Then,

min
x∗∈D

‖x∗‖∗ = max
a: ‖Ya‖≤1

c>a

Furthermore, the optimal x∗ is aligned with the optimal Ya.

12 – 10



Example: Rocket Control

We would like to optimize the fuel consumption of a rocket:

x(t) = altitude of a rocket at time t
u(t) = thrust applied at time t
system dynamics:

ẍ(t) = u(t)− 1, x(0) = ẋ(0) = 0

constraint: acheive a certain altitude by time T (free variable),

x(T ) = 1

fuel consumption =
∫ T

0
|u(t)| dt

12 – 11

Example: Rocket Control

For now, fix T (we will optimize over T later).

By integration by parts, the dynamics be written as

x(T ) =
∫ T

0
(T − t)u(t) dt − 1

2T 2

minimize
∫ T

0
|u(t))| dt

subject to
∫ T

0
(T − t)u(t) dt = 1

2T 2 + 1

We would like to formulate this as a minimum norm problem in a dual
space.
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Example: Rocket Control

minimize
∫ T

0
|dv(t))|

subject to
∫ T

0
(T − t) dv(t) = 1

2T 2 + 1

⇔
minimize ‖v‖
subject to 〈g, v〉 = 1

2T 2 + 1
v ∈ NBV[0,T ]

where g(t) , T − t

⇔
maximize α

(
1
2T 2 + 1

)

subject to ‖αg‖ ≤ 1
α ∈ R

⇔
maximize α

(
1
2T 2 + 1

)

subject to |α| ≤ 1/T
α ∈ R

since ‖g‖ = T

12 – 13

Example: Rocket Control

max
α: |α|≤1/T

α
(

1
2T 2 + 1

)

The maximum is achieved when α = 1/T , thus we have the optimal
value

min
v: 〈g,v〉= 1

2 T2+1
‖v‖ = 1

2T + 1/T

The optimal v must be aligned with αg, therefore it is a step function
at t = 0 (impulse control). Now, optimizing over T , we obtain

T ∗ =
√

2, v∗(t) =
{

0 if t = 0√
2 if t ∈ (0,

√
2]
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Hyperplanes

Definition. A hyperplane H in a normed linear space X is maximal
proper affine set. In other words, H ( X , and if V is an affine set with
H ( V , then V = X .

Theorem. A set H is a hyperplane if and only if it is of the form

{x ∈ X : f (x) = c}
where f is a non-zero linear functional and c is a scalar.

Theorem. The hyperplane H = {x : f (x) = c} is closed for all scalars
c if and only if f is continuous.

Definition. A halfspace is a set of the form {x : f (x) ≤ c}. It is closed
if f is continuous.

12 – 15

Hyperplanes and Convex Sets

Definition. Suppose K is a convex subset of a normed linear space X
and 0 ∈ int K. The Minkowski functional p : X → R is defined by

p(x) , inf {r ∈ R : x/r ∈ K, r > 0}

Lemma. The Minkowski functional satisfies:

1. 0 ≤ p(x) <∞
2. p(αx) = αp(x), for α > 0
3. p(x1 + x2) ≤ p(x1) + p(x2)
4. p is continuous

5. cl K = {x : p(x) ≤ 1}, int K = {x : p(x) < 1}
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Geometric Hahn-Banach Theorem

Theorem. Let K be a convex set with a non-empty interior in a
normed linear space X . Suppose V ⊂ X is an affine set containing no
interior points of K. Then, there exists a closed hyperplane H
containing V but no interior points of K. In other words, there exists
x∗ ∈ X ∗ and c ∈ R such that

〈x, x∗〉 = c, ∀ x ∈ V
〈x, x∗〉 < c, ∀ x ∈ int K
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Geometric Hahn-Banach Theorem: Proof

WLOG, assume that 0 ∈ int K. LetM be the subspace of X
generated by V. Since V is a hyperplane ofM which does not contain
0, there is exists a functional f onM with

V = {x ∈M : f (x) = 1}

Since V contains no interior points of K,

f (v) = 1 ≤ p(v), ∀ v ∈ V
By homogeneity,

f (αv) = α ≤ p(αv), ∀ v ∈ V, α > 0

f (αv) ≤ 0 ≤ p(αv), ∀ v ∈ V, α < 0
Thus,

f (x) ≤ p(x), ∀ x ∈M
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Geometric Hahn-Banach Theorem: Proof

By the Hahn-Banach Theorem, we can extend f to a functional F on
X with

F(x) ≤ p(x), ∀ x ∈ X
Since p is continuous, so is F , and F(x) < 1 for all x ∈ int K. Then,
the desired hyperplane is

H = {x ∈ X : F(x) = 1}
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Minimum Norm Duality Revisited

Suppose K ⊂ X is a convex set in a normed vector space X . Define
the support functional h : X ∗ → R ∪ {∞} by

SK(x∗) , sup
x∈K
〈x, x∗〉

Theorem. Suppose x1 ∈ X . Then,
inf

x∈K
‖x − x1‖ = max

‖x∗‖∗≤1
〈x1, x∗〉 − SK(x∗)

where the maximum is achieved by some x∗0 ∈ X ∗.
If the minimum is acheived by some x0 ∈ K, then −x∗0 is aligned with
x0 − x1.
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Review

1. Introduction
2. Local theory of optimization

Unconstrained optimization: Weierstrass’ Theorem, first- and
second-order conditions
Constrained optimization: Lagrangian, KKT conditions

3. Global theory of optimization
Convex sets and functions
Duality: geometric interpretation, strong and weak duality,
properties of dual problems, duality for LPs and QPs, conjugate
duality

4. Applications and problem formulation: standard forms,
approximation and fitting, estimation, geometric problems

5. Vector space methods: projection theorem, dual spaces,
Hahn-Banach theorem, minimum norm duality
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